SmoothnessIn mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over some domain, called differentiability class. At the very minimum, a function could be considered smooth if it is differentiable everywhere (hence continuous). At the other end, it might also possess derivatives of all orders in its domain, in which case it is said to be infinitely differentiable and referred to as a C-infinity function (or function).
Équations de Lagrangevignette|Joseph-Louis Lagrange Les équations de Lagrange, découvertes en 1788 par le mathématicien Joseph-Louis Lagrange, sont une reformulation de la mécanique classique. Il s'agit d'une reformulation de l'équation de Newton, qui ne fait pas intervenir les forces de réaction. Pour cela, on exprime les contraintes que subit la particule étudiée sous la forme d'équations du type : Il n'y a qu'une équation si le mouvement est contraint à une surface, deux s'il est contraint à une courbe.
Variété riemannienneEn mathématiques, et plus précisément en géométrie, la variété riemannienne est l'objet de base étudié en géométrie riemannienne. Il s'agit d'une variété, c'est-à-dire un espace courbe généralisant les courbes (de dimension 1) ou les surfaces (de dimension 2) à une dimension n quelconque, et sur laquelle il est possible d'effectuer des calculs de longueur. En termes techniques, une variété riemannienne est une variété différentielle munie d'une structure supplémentaire appelée métrique riemannienne permettant de calculer le produit scalaire de deux vecteurs tangents à la variété en un même point.
Variété pseudo-riemannienneLa géométrie pseudo-riemannienne est une extension de la géométrie riemannienne ; au même titre que, en algèbre bilinéaire, l'étude des formes bilinéaires symétriques généralisent les considérations sur les métriques euclidiennes. Cependant, cette géométrie présente des aspects non intuitifs des plus surprenants. Une métrique pseudo-riemannienne sur une variété différentielle M de dimension n est une famille g= de formes bilinéaires symétriques non dégénérées sur les espaces tangents de signature constante (p,q).
Lissage (mathématiques)vignette|Exemple de lissage d'une courbe. La courbe bleue joint des données brutes de la température moyenne quotidienne à la station météo de Paris-Montsouris (France) du 1960/01/01 au 1960/02/29. La courbe orange est obtenue avec un lissage exponentiel simple et un facteur alpha = 0.1. Le lissage est une technique qui consiste à réduire les irrégularités et singularités d'une courbe en mathématiques. Cette technique est utilisée en traitement du signal pour atténuer ce qui peut être considéré comme une perturbation ou un bruit de mesure.
Énergie (physique)En physique, l'énergie est une grandeur qui mesure la capacité d'un système à modifier un état, à produire un travail entraînant un mouvement, un rayonnement électromagnétique ou de la chaleur. Dans le Système international d'unités (SI), l'énergie s'exprime en joules et est de dimension . Le mot français vient du latin vulgaire energia, lui-même issu du grec ancien / enérgeia. Ce terme grec originel signifie « force en action », par opposition à / dýnamis signifiant « force en puissance » ; Aristote a utilisé ce terme , pour désigner la réalité effective en opposition à la réalité possible.
Curvature of Riemannian manifoldsIn mathematics, specifically differential geometry, the infinitesimal geometry of Riemannian manifolds with dimension greater than 2 is too complicated to be described by a single number at a given point. Riemann introduced an abstract and rigorous way to define curvature for these manifolds, now known as the Riemann curvature tensor. Similar notions have found applications everywhere in differential geometry of surfaces and other objects. The curvature of a pseudo-Riemannian manifold can be expressed in the same way with only slight modifications.
Politique énergétiqueLa politique énergétique est la politique adoptée par une entité vis-à-vis de la gestion de l'énergie. Elle a notamment une dimension géopolitique. Académies suisses des sciences, « Instruments pour une politique climatique et énergétique efficace », fiche d'information, 2019. Agence internationale de l'énergie Certificat économie énergie Dépendance au pétrole Direction générale de l'énergie et des matières premières Politique climatique Politique énergétique de l'Union européenne Politiques publiques de rénovation énergétique Sécurité énergétique Les invariants de l'énergie, conférence de Samuele Furfari sur la consommation d'énergie par l'homme (dépendance, ressources et contexte géopolitique).
Géométrie riemanniennevignette|275px|L'étude de la forme de l'univers est une adaptation des idées et méthodes de la géométrie riemannienne La géométrie riemannienne est une branche de la géométrie différentielle nommée en l'honneur du mathématicien Bernhard Riemann, qui introduisit les concepts fondateurs de variété géométrique et de courbure. Il s'agit de surfaces ou d'objets de plus grande dimension sur lesquels existent des notions d'angle et de longueur, généralisant la géométrie traditionnelle qui se limitait à l'espace euclidien.
Conservation de l'énergieLa conservation de l'énergie est un principe physique, selon lequel l'énergie totale d'un système isolé est invariante au cours du temps. Ce principe, largement vérifié expérimentalement, est de première importance en physique, et impose que pour tout phénomène physique l'énergie totale initiale du système isolé soit égale à l'énergie totale finale, donc que de l'énergie passe d'une forme à une autre durant le déroulement du phénomène, sans création ni disparition d'énergie.