Théorème de Noether (physique)Le théorème de Noether exprime l'équivalence qui existe entre les lois de conservation et l'invariance du lagrangien d'un système par certaines transformations (appelées symétries) des coordonnées. Démontré en 1915 et publié en 1918 par la mathématicienne Emmy Noether à Göttingen, ce théorème fut qualifié par Albert Einstein de « monument de la pensée mathématique » dans une lettre envoyée à David Hilbert en vue de soutenir la carrière de la mathématicienne.
Variété différentielleEn mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Uniform tilings in hyperbolic planeIn hyperbolic geometry, a uniform hyperbolic tiling (or regular, quasiregular or semiregular hyperbolic tiling) is an edge-to-edge filling of the hyperbolic plane which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the tiling has a high degree of rotational and translational symmetry.
Équation d'Euler-LagrangeL’équation d'Euler-Lagrange (en anglais, Euler–Lagrange equation ou ELE) est un résultat mathématique qui joue un rôle fondamental dans le calcul des variations. On retrouve cette équation dans de nombreux problèmes réels de minimisation de longueur d'arc, tels que le problème brachistochrone ou bien encore les problèmes géodésiques. Elle est nommée d'après Leonhard Euler et Joseph-Louis Lagrange. E désignera un espace vectoriel normé, [t , t] un intervalle réel, et l'espace affine des fonctions x : [t , t] → E de classe C telles que , où x , x sont deux vecteurs fixés de E.
Loi scientifiquevignette|Ce diagramme de Venn tente de comparer et d'opposer les lois et les théories scientifiques. Une loi scientifique est un postulat basé sur des observations ou expériences répétées qui décrivent ou prédisent certains aspects de l'univers. Le terme "loi" est utilisé dans de nombreux cas (approximatif, précis, large ou étroit) dans tous les domaines des sciences naturelles (physique, chimie, astronomie, géosciences, biologie).
Hyperbolic spaceIn mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane.
Demi-plan de PoincaréLe demi-plan de Poincaré est un sous-ensemble des nombres complexes. Il a permis au mathématicien français Henri Poincaré d'éclairer les travaux du Russe Nikolaï Lobatchevski. Le demi-plan de Poincaré est formé par les nombres complexes de partie imaginaire strictement positive. Il fournit un exemple de géométrie non euclidienne, plus précisément de géométrie hyperbolique. On considère le demi-plan supérieur : On munit le demi-plan supérieur de la métrique : Cette métrique possède une courbure scalaire constante négative : On se ramène usuellement au cas d'une courbure unité, c’est-à-dire qu'on choisit : a = 1 pour simplifier les équations.
Jet bundleIn differential topology, the jet bundle is a certain construction that makes a new smooth fiber bundle out of a given smooth fiber bundle. It makes it possible to write differential equations on sections of a fiber bundle in an invariant form. Jets may also be seen as the coordinate free versions of Taylor expansions. Historically, jet bundles are attributed to Charles Ehresmann, and were an advance on the method (prolongation) of Élie Cartan, of dealing geometrically with higher derivatives, by imposing differential form conditions on newly introduced formal variables.
Triangle hyperboliquedroite|vignette|250x250px| Un triangle hyperbolique sur une surface en selle de cheval. Un triangle hyperbolique est, en géométrie hyperbolique, un triangle dans le plan hyperbolique. Comme en géométrie plane, un triangle est constitué de trois segments (ses côtés) reliant trois points (ses sommets). Tout comme dans le cas euclidien, trois points d'un espace hyperbolique de dimension quelconque sont toujours coplanaires. Il suffit donc de caractériser les triangles dans le plan hyperbolique pour en avoir une description dans tous les espaces hyperboliques de dimensions supérieures.
GrassmannienneEn mathématiques, les grassmanniennes sont des variétés dont les points correspondent aux sous-espaces vectoriels d'un espace vectoriel fixé. On note G(k, n) ou G(K) la grassmannienne des sous-espaces de dimension k dans un espace de dimension n sur le corps K. Ces espaces portent le nom de Hermann Grassmann qui en donna une paramétrisation et sont encore appelés grassmanniennes des « k-plans ». Pour k = 1, la grassmannienne est l'espace projectif associé à l'espace vectoriel.