Fonction spécialeL'analyse mathématique regroupe sous le terme de fonctions spéciales un ensemble de fonctions analytiques non élémentaires, qui sont apparues au comme solutions d'équations de la physique mathématique, particulièrement les équations aux dérivées partielles d'ordre deux et quatre. Comme leurs propriétés ont été étudiées extensivement (et continuent de l'être), on dispose à leur sujet d'une multitude d'informations.
Intégrale elliptiqueLes intégrales elliptiques interviennent dans de nombreux problèmes de physique mathématique : comme par exemple, le calcul de la période d'un pendule aux grandes amplitudes et plus généralement les formes d'équilibre ellipsoïdales des corps en rotation autour d'un axe (planètes, étoiles, goutte d'eau, noyau atomique,...). Une intégrale elliptique est une intégrale de la forme où est une fonction rationnelle à deux variables, est une fonction polynomiale de degré 3 ou 4 avec des racines simples et est une constante.
Analyse fractionnaireL'analyse fractionnaire est une branche de l'analyse mathématique qui étudie la possibilité de définir des puissances non entières des opérateurs de dérivation et d'intégration. Ces dérivées ou intégrations fractionnaires entrent dans le cadre plus général des opérateurs pseudo-différentiels. Par exemple, on peut se demander comment interpréter convenablement la racine carrée de l'opérateur de dérivation, c'est-à-dire une expression d'un certain opérateur qui, lorsqu'elle est appliquée deux fois à une fonction, aura le même effet que la dérivation.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Integral transformIn mathematics, an integral transform maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the inverse transform. An integral transform is any transform of the following form: The input of this transform is a function , and the output is another function .
Corps commutatifvignette|Corps commutatif (pour n premier) En mathématiques, un corps commutatif (parfois simplement appelé corps, voir plus bas, ou parfois appelé champ) est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni de deux opérations binaires rendant possibles les additions, soustractions, multiplications et divisions. Plus précisément, un corps commutatif est un anneau commutatif dans lequel l'ensemble des éléments non nuls est un groupe commutatif pour la multiplication.
Équation de Fermat généraliséeEn arithmétique, l'équation de Fermat généralisée est l'équationoù sont des entiers non nuls, sont des entiers non nuls premiers entre eux et sont entiers. Comme son nom le laisse transparaître, cette équation généralise l'équation dont le fameux dernier théorème de Fermat établit l'impossibilité quand . À l'instar de celui-ci avant sa résolution, son principal intérêt réside aujourd'hui dans la stimulation du développement des nouveaux outils mathématiques nécessaires à son appréhension.
Exponentielle intégraleEn mathématiques, la fonction exponentielle intégrale, habituellement notée Ei, est définie par : Comme l'intégrale de la fonction inverse () diverge en 0, cette définition doit être comprise, si x > 0, comme une valeur principale de Cauchy. vignette|Représentation graphique de la fonction exponentielle intégrale. La fonction Ei est liée à la fonction li (logarithme intégral) par : vignette|upright=1.5|Représentation graphique des fonctions E (en haut) et Ei (en bas), pour x > 0.
Analyse (mathématiques)L'analyse (du grec , délier, examiner en détail, résoudre) a pour point de départ la formulation rigoureuse du calcul infinitésimal. C'est la branche des mathématiques qui traite explicitement de la notion de limite, que ce soit la limite d'une suite ou la limite d'une fonction. Elle inclut également des notions comme la continuité, la dérivation et l'intégration. Ces notions sont étudiées dans le contexte des nombres réels ou des nombres complexes.
Nombre premiervignette|Nombres naturels de zéro à cent. Les nombres premiers sont marqués en rouge. vignette|Le nombre 7 est premier car il admet exactement deux diviseurs positifs distincts. Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et positifs. Ces deux diviseurs sont 1 et le nombre considéré, puisque tout nombre a pour diviseurs 1 et lui-même (comme le montre l’égalité n = 1 × n), les nombres premiers étant ceux qui ne possèdent pas d'autre diviseur.