Densité spectrale de puissanceOn définit la densité spectrale de puissance (DSP en abrégé, Power Spectral Density ou PSD en anglais) comme étant le carré du module de la transformée de Fourier, divisé par le temps d'intégration, (ou, plus rigoureusement, la limite quand tend vers l'infini de l'espérance mathématique du carré du module de la transformée de Fourier du signal - on parle alors de densité spectrale de puissance moyenne).
Estimation spectraleL'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP). Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories : Modèles autorégressif (AR) Modèles à moyenne ajustée (MA) Modèles autorégressif à moyenne ajustée (ARMA). L'approche paramétrique se décompose en trois étapes : Choisir un modèle décrivant le processus de manière appropriée.
Simulation informatiquevignette|upright=1|Une simulation informatique, sur une étendue de , de l'évolution du typhon Mawar produite par le Modèle météorologique Weather Research and Forecasting La simulation informatique ou numérique est l'exécution d'un programme informatique sur un ordinateur ou réseau en vue de simuler un phénomène physique réel et complexe (par exemple : chute d’un corps sur un support mou, résistance d’une plateforme pétrolière à la houle, fatigue d’un matériau sous sollicitation vibratoire, usure d’un roulem
Revue systématiquethumb|Ce diagramme illustre ce que font les auteurs d'une revue systématique. Une revue systématique est un travail de collecte, d'évaluation critique et de synthèse des connaissances existantes sur une question donnée. Cette question bien définie est issue de l'étude d'une problématique posée par un commanditaire, un gestionnaire, un praticien, un chercheur... Il s'agit, contrairement à une revue narrative et non systématique de la littérature, de minimiser les biais pouvant être inhérents soit à la matière première (données, connaissances) soit à la conduite de la revue elle-même, afin d'atteindre la plus grande objectivité possible.
Théorème spectralEn mathématiques, et plus particulièrement en algèbre linéaire et en analyse fonctionnelle, on désigne par théorème spectral plusieurs énoncés affirmant, pour certains endomorphismes, l'existence de décompositions privilégiées, utilisant en particulier l'existence de sous-espaces propres. vignette|Une illustration du théorème spectral dans le cas fini : un ellipsoïde possède (en général) trois axes de symétrie orthogonaux (notés ici x, y et z).
Article de revueUn article de revue (ou « article de synthèse » ou « article de revue de littérature ») est un type particulier d'article publié dans une revue scientifique dont le principe est de dresser un état des lieux dans un domaine particulier de la recherche et de dégager les directions particulières prises dans ce domaine. Le contenu principal d'un article de revue est une revue de littérature (ou revue de la littérature), c'est-à-dire une méthode de recherche d'information scientifique structurée, réplicable et ciblée sur un sujet de recherche spécifique.
Théorie spectraleEn mathématiques, et plus particulièrement en analyse, une théorie spectrale est une théorie étendant à des opérateurs définis sur des espaces fonctionnels généraux la théorie élémentaire des valeurs propres et des vecteurs propres de matrices. Bien que ces idées viennent au départ du développement de l'algèbre linéaire, elles sont également liées à l'étude des fonctions analytiques, parce que les propriétés spectrales d'un opérateur sont liées à celles de fonctions analytiques sur les valeurs de son spectre.
Least-squares spectral analysisLeast-squares spectral analysis (LSSA) is a method of estimating a frequency spectrum based on a least-squares fit of sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science, generally boosts long-periodic noise in the long and gapped records; LSSA mitigates such problems. Unlike in Fourier analysis, data need not be equally spaced to use LSSA.
Méthode de Monte-CarloUne méthode de Monte-Carlo, ou méthode Monte-Carlo, est une méthode algorithmique visant à calculer une valeur numérique approchée en utilisant des procédés aléatoires, c'est-à-dire des techniques probabilistes. Les méthodes de Monte-Carlo sont particulièrement utilisées pour calculer des intégrales en dimensions plus grandes que 1 (en particulier, pour calculer des surfaces et des volumes). Elles sont également couramment utilisées en physique des particules, où des simulations probabilistes permettent d'estimer la forme d'un signal ou la sensibilité d'un détecteur.