Onde cnoïdalevignette|Bombardiers de la USAAF survolant une houle en eau peu profonde près de la côte du Panama en 1933. Ces crêtes bien définies et ces creux plats sont caractéristiques des ondes cnoïdales. Les ondes cnoïdales sont des ondes de gravité rencontrées sur la surface de la mer, des vagues. Elles sont solutions de l'équation de Korteweg-de Vries où interviennent les fonctions elliptiques de Jacobi notées cn, d'où le nom d'ondes « cn-oïdales ». Ce type d'onde apparaît également dans les problèmes de propagation d'onde acoustique ionique.
Dispersion (water waves)In fluid dynamics, dispersion of water waves generally refers to frequency dispersion, which means that waves of different wavelengths travel at different phase speeds. Water waves, in this context, are waves propagating on the water surface, with gravity and surface tension as the restoring forces. As a result, water with a free surface is generally considered to be a dispersive medium. For a certain water depth, surface gravity waves – i.e.
Équations de Boussinesqthumb|right|250px|Ondes de gravité à l'entrée d'un port (milieu à profondeur variable). Les équations de Boussinesq en mécanique des fluides désignent un système d'équations d'ondes obtenu par approximation des équations d'Euler pour des écoulements incompressibles irrotationnels à surface libre. Elles permettent de prévoir les ondes de gravité comme ondes cnoïdales, ondes de Stokes, houle, tsunamis, solitons, etc. Ces équations ont été introduites par Joseph Boussinesq en 1872 et sont un exemple d'équations aux dérivées partielles dispersives.
Internal waveInternal waves are gravity waves that oscillate within a fluid medium, rather than on its surface. To exist, the fluid must be stratified: the density must change (continuously or discontinuously) with depth/height due to changes, for example, in temperature and/or salinity. If the density changes over a small vertical distance (as in the case of the thermocline in lakes and oceans or an atmospheric inversion), the waves propagate horizontally like surface waves, but do so at slower speeds as determined by the density difference of the fluid below and above the interface.
Ondevignette|Propagation d'une onde. Une onde est la propagation d'une perturbation produisant sur son passage une variation réversible des propriétés physiques locales du milieu. Elle se déplace avec une vitesse déterminée qui dépend des caractéristiques du milieu de propagation. vignette|Une vague s'écrasant sur le rivage. Il existe trois principaux types d'ondes : les ondes mécaniques se propagent à travers une matière physique dont la substance se déforme. Les forces de restauration inversent alors la déformation.
Onde de StokesLes ondes de Stokes sont des ondes de gravité rencontrées sur la surface de la mer, des vagues. Elles ont des solutions des équations d'Euler pour un fluide incompressible irrotationnel à surface libre soumis à un champ de gravité qui ont été obtenues par George Gabriel Stokes par la théorie des perturbations en 1847 dans le cas d'un milieu de profondeur infinie. Pour un écoulement incompressible irrotationnel la vitesse dérive d'un potentiel ψ, les équations d'incompressibilité et de quantité de mouvement s'écrivent où ρ est la masse volumique, p la pression, g la gravité et z l'altitude.
Mesure sigma-finieSoit (X, Σ, μ) un espace mesuré. On dit que la mesure μ est σ-finie lorsqu'il existe un recouvrement dénombrable de X par des sous-ensembles de mesure finie, c'est-à-dire lorsqu'il existe une suite (E) d'éléments de la tribu Σ, tous de mesure finie, avec Mesure finie Mesure de comptage sur un ensemble dénombrable Mesure de Lebesgue. En effet, l'ensemble des intervalles pour tous les nombres entiers est un recouvrement dénombrable de , et chacun des intervalles est de mesure 1.
Théorie des ensemblesLa théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.
Ensemblevignette|Ensemble de polygones dans un diagramme d'Euler En mathématiques, un ensemble désigne intuitivement un rassemblement d’objets distincts (les éléments de l'ensemble), « une multitude qui peut être comprise comme une totalité » pour paraphraser Georg Cantor qui est à l'origine de la théorie des ensembles. Dans une approche axiomatique, la théorie des ensembles est une théorie de l'appartenance (un élément d'un ensemble est dit « appartenir » à cet ensemble).
Mesure signéeEn mathématiques et plus particulièrement en théorie de la mesure, une mesure signée est une extension de la notion de mesure dans le sens où les valeurs négatives sont autorisées, ce qui n'est pas le cas d'une mesure classique qui est, par définition, à valeurs positives. Une mesure signée est dite finie si elle ne prend que des valeurs réelles, c'est-à-dire, si elle ne prend jamais les valeurs ou . Pour clarifier, on utilisera le terme de « mesure positive », au lieu du simple « mesure », pour les mesures signées ne prenant jamais de valeurs strictement négatives.