Bacterial genomeBacterial genomes are generally smaller and less variant in size among species when compared with genomes of eukaryotes. Bacterial genomes can range in size anywhere from about 130 kbp to over 14 Mbp. A study that included, but was not limited to, 478 bacterial genomes, concluded that as genome size increases, the number of genes increases at a disproportionately slower rate in eukaryotes than in non-eukaryotes. Thus, the proportion of non-coding DNA goes up with genome size more quickly in non-bacteria than in bacteria.
Prédiction de gènesEn bio-informatique, la prédiction de gènes consiste à identifier les zones de l'ADN qui correspondent à des gènes (le reste étant non codant). Les méthodes par similitudes, aussi appelées méthodes par homologie ou méthodes extrinsèques, consistent à utiliser des informations extérieures au génome pour trouver les gènes. Plus précisément, ces méthodes consistent à comparer la séquence étudiée avec des séquences connues, rassemblées dans les bases de données.
DonnéeUne donnée est ce qui est connu et qui sert de point de départ à un raisonnement ayant pour objet la détermination d'une solution à un problème en relation avec cette donnée. Cela peut être une description élémentaire qui vise à objectiver une réalité, le résultat d'une comparaison entre deux événements du même ordre (mesure) soit en d'autres termes une observation ou une mesure. La donnée brute est dépourvue de tout raisonnement, supposition, constatation, probabilité.
Génomique comparativeLa génomique comparative est l'étude comparative de la structure en fonction des génomes de différentes espèces. Elle permet d'identifier et de comprendre les effets de la sélection sur l'organisation et l'évolution des génomes. Ce nouvel axe de recherche bénéficie de l'augmentation du nombre de génomes séquencés et de la puissance des outils informatiques. Une des applications majeures de la génomique comparative est la découverte de gènes et de leurs séquences régulatrices non codantes basée sur le principe de conservation.
Protein function predictionProtein function prediction methods are techniques that bioinformatics researchers use to assign biological or biochemical roles to proteins. These proteins are usually ones that are poorly studied or predicted based on genomic sequence data. These predictions are often driven by data-intensive computational procedures. Information may come from nucleic acid sequence homology, gene expression profiles, protein domain structures, text mining of publications, phylogenetic profiles, phenotypic profiles, and protein-protein interaction.
Protein–protein interaction predictionProtein–protein interaction prediction is a field combining bioinformatics and structural biology in an attempt to identify and catalog physical interactions between pairs or groups of proteins. Understanding protein–protein interactions is important for the investigation of intracellular signaling pathways, modelling of protein complex structures and for gaining insights into various biochemical processes.
Entrepôt de donnéesvignette|redresse=1.5|Vue d'ensemble d'une architecture entrepôt de données. Le terme entrepôt de données ou EDD (ou base de données décisionnelle ; en anglais, data warehouse ou DWH) désigne une base de données utilisée pour collecter, ordonner, journaliser et stocker des informations provenant de base de données opérationnelles et fournir ainsi un socle à l'aide à la décision en entreprise. Un entrepôt de données est une base de données regroupant une partie ou l'ensemble des données fonctionnelles d'une entreprise.
Big dataLe big data ( « grosses données » en anglais), les mégadonnées ou les données massives, désigne les ressources d’informations dont les caractéristiques en termes de volume, de vélocité et de variété imposent l’utilisation de technologies et de méthodes analytiques particulières pour créer de la valeur, et qui dépassent en général les capacités d'une seule et unique machine et nécessitent des traitements parallélisés. L’explosion quantitative (et souvent redondante) des données numériques permet une nouvelle approche pour analyser le monde.
Projet de séquençage de génomeLes projets de séquençage de génome sont des projets scientifiques qui ont pour but d'obtenir les séquences complètes des génomes de différents organismes: bactéries, plantes, champignons, animaux, et humain. Ce travail nécessite la séquence de l'ADN de chacun des chromosomes de l'espèce. Pour une bactérie, il n'y a qu'un chromosome à séquencer. Pour l'espèce humaine, qui possède 22 paires de chromosomes et 2 chromosomes sexuels (X et Y), il y a 24 chromosomes à séquencer. Le projet génome humain est abouti depuis 2003.
Analyse des donnéesL’analyse des données (aussi appelée analyse exploratoire des données ou AED) est une famille de méthodes statistiques dont les principales caractéristiques sont d'être multidimensionnelles et descriptives. Dans l'acception française, la terminologie « analyse des données » désigne donc un sous-ensemble de ce qui est appelé plus généralement la statistique multivariée. Certaines méthodes, pour la plupart géométriques, aident à faire ressortir les relations pouvant exister entre les différentes données et à en tirer une information statistique qui permet de décrire de façon plus succincte les principales informations contenues dans ces données.