Treillis (ensemble ordonné)En mathématiques, un treillis () est une des structures algébriques utilisées en algèbre générale. C'est un ensemble partiellement ordonné dans lequel chaque paire d'éléments admet une borne supérieure et une borne inférieure. Un treillis peut être vu comme le treillis de Galois d'une relation binaire. Il existe en réalité deux définitions équivalentes du treillis, une concernant la relation d'ordre citée précédemment, l'autre algébrique. Tout ensemble muni d'une relation d'ordre total est un treillis.
Field equationIn theoretical physics and applied mathematics, a field equation is a partial differential equation which determines the dynamics of a physical field, specifically the time evolution and spatial distribution of the field. The solutions to the equation are mathematical functions which correspond directly to the field, as functions of time and space. Since the field equation is a partial differential equation, there are families of solutions which represent a variety of physical possibilities.
Théorie de jaugeEn physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Symétrie conformeEn physique théorique, la symétrie conforme désigne la symétrie sous changement d'échelle, on dit aussi sous dilatation, ainsi que sous les transformations conformes spéciales. Sa combinaison avec le groupe de Poincaré donne le groupe de symétrie conforme ou plus simplement, groupe conforme. Voici un exemple de représentation du groupe conforme dans l'espace-temps, ou plus précisément de son algèbre de Lie où les sont les générateurs associés au groupe de Lorentz, les génèrent les translations de l'espace-temps (les valeurs propres de ces derniers correspondant au quadrivecteur impulsion-énergie), engendre la transformation par dilatation et enfin les engendrent les transformations conformes spéciales.
Construction managementConstruction management (CM) is a professional service that uses specialized, project management techniques and software to oversee the planning, design, construction and closeout of a project. The purpose of construction management is to control the quality of a project's scope, time / delivery and cost—sometimes referred to as a project management triangle or "triple constraints." CM is compatible with all project delivery systems, including design-bid-build, design-build, CM At-Risk and Public Private Partnerships.
Relation asymétriqueEn mathématiques, une relation (binaire, interne) R est dite asymétrique si elle vérifie : ou encore, si son graphe est disjoint de celui de sa relation réciproque. L'asymétrie est parfois appelée « antisymétrie forte », par opposition à l'antisymétrie (usuelle, ou « faible »). En effet, une relation est asymétrique si et seulement si elle est à la fois antisymétrique et antiréflexive. les relations d'ordre strict, qui sont les relations transitives et asymétriques ; dans les entiers, la relation "est le successeur de" ; dans un ensemble de personnes, la relation « est enfant de » : personne n'est enfant d'un de ses enfants.
Homogeneous relationIn mathematics, a homogeneous relation (also called endorelation) on a set X is a binary relation between X and itself, i.e. it is a subset of the Cartesian product X × X. This is commonly phrased as "a relation on X" or "a (binary) relation over X". An example of a homogeneous relation is the relation of kinship, where the relation is between people. Common types of endorelations include orders, graphs, and equivalences. Specialized studies of order theory and graph theory have developed understanding of endorelations.
Covariance de Lorentzvignette|Illustration de l'espace-temps. En relativité restreinte, une quantité est dite covariante de Lorentz lorsque ses composantes forment une représentation du groupe de Lorentz. Par exemple le temps propre se transforme de façon particulièrement simple puisqu'il est invariant sous transformation de Lorentz, on dit que c'est une quantité scalaire et on parle de scalaire de Lorentz. La représentation associée du groupe de Lorentz est la représentation triviale.
Théorie du champ moléculaireLe champ moléculaire est un modèle développé par Pierre Weiss dans l’objectif de fonder une théorie du comportement des ferromagnétiques. Cette théorie est ensuite étendue à d'autres matériaux magnétiques. Certains matériaux, en particulier les ferromagnétiques, possèdent une aimantation spontanée en l'absence de tout champ magnétique externe. Ce modèle explique l'existence de cette aimantation par l'action d'un champ interne nommé champ moléculaire.
Paramètre cristallinLes paramètres cristallins, aussi appelés paramètres de maille, sont des grandeurs utilisées pour décrire la maille d'un cristal. On distingue trois longueurs (a, b, c) et trois angles (α, β, γ) qui déterminent entièrement le parallélépipède qu'est la maille, élémentaire ou multiple. Les paramètres a, b et c sont mesurés en ångströms (Å), en nanomètres (nm), parfois en picomètres, et α, β et γ en degrés (°).