Jean-Pierre SerreJean-Pierre Serre, né le à Bages (Pyrénées-Orientales), est un mathématicien français, considéré comme l’un des plus grands mathématiciens du . Il reçoit de nombreuses récompenses pour ses recherches, et est en particulier lauréat de la médaille Fields en 1954, du prix Balzan en 1985, de la médaille d'or du CNRS en 1987, du prix Wolf de mathématiques en 2000, et le premier lauréat du prix Abel en 2003. Jean-Pierre Serre est né en 1926 à Bages (Pyrénées-Orientales) d'Adèle et Jean Serre, pharmaciens, et passe son enfance à Vauvert où ils sont installés.
Module libreEn algèbre, un module libre est un module M qui possède une base B, c'est-à-dire un sous-ensemble de M tel que tout élément de M s'écrive de façon unique comme combinaison linéaire (finie) d'éléments de B. Une base de M est une partie B de M qui est à la fois : génératrice pour M, c'est-à-dire que tout élément de M est combinaison linéaire d'éléments de B ; libre, c'est-à-dire que pour toutes familles finies (ei)1≤i≤n d'éléments de B deux à deux distincts et (ai)1≤i≤n d'éléments de l'anneau sous-jacent telles que a1e1 + .
Caractéristique d'EulerEn mathématiques, et plus précisément en géométrie et en topologie algébrique, la caractéristique d'Euler — ou d'Euler-Poincaré — est un invariant numérique, un nombre qui décrit un aspect d'une forme d'un espace topologique ou de la structure de cet espace. Elle est communément notée χ. La caractéristique d'Euler fut définie à l'origine pour les polyèdres et fut utilisée pour démontrer divers théorèmes les concernant, incluant la classification des solides de Platon.
Kaplansky's theorem on projective modulesIn abstract algebra, Kaplansky's theorem on projective modules, first proven by Irving Kaplansky, states that a projective module over a local ring is free; where a not-necessarily-commutative ring is called local if for each element x, either x or 1 − x is a unit element. The theorem can also be formulated so to characterize a local ring (#Characterization of a local ring). For a finite projective module over a commutative local ring, the theorem is an easy consequence of Nakayama's lemma.
Noetherian moduleIn abstract algebra, a Noetherian module is a module that satisfies the ascending chain condition on its submodules, where the submodules are partially ordered by inclusion. Historically, Hilbert was the first mathematician to work with the properties of finitely generated submodules. He proved an important theorem known as Hilbert's basis theorem which says that any ideal in the multivariate polynomial ring of an arbitrary field is finitely generated.
Module sur un anneauEn mathématiques, et plus précisément en algèbre générale, au sein des structures algébriques, : pour un espace vectoriel, l'ensemble des scalaires forme un corps tandis que pour un module, cet ensemble est seulement muni d'une structure d'anneau (unitaire, mais non nécessairement commutatif). Une partie des travaux en théorie des modules consiste à retrouver les résultats de la théorie des espaces vectoriels, quitte pour cela à travailler avec des anneaux plus maniables, comme les anneaux principaux.
Module platLa notion de module plat a été introduite et utilisée, en géométrie algébrique, par Jean-Pierre Serre. Cette notion se trouve également dans un ouvrage contemporain d'Henri Cartan et Samuel Eilenberg en algèbre homologique. Elle généralise les modules projectifs et a fortiori les modules libres. En algèbre commutative et en géométrie algébrique, cette notion a été notamment exploitée par Alexander Grothendieck et son école, et s'est révélée d'une importance considérable.
Krull ringIn commutative algebra, a Krull ring, or Krull domain, is a commutative ring with a well behaved theory of prime factorization. They were introduced by Wolfgang Krull in 1931. They are a higher-dimensional generalization of Dedekind domains, which are exactly the Krull domains of dimension at most 1. In this article, a ring is commutative and has unity. Let be an integral domain and let be the set of all prime ideals of of height one, that is, the set of all prime ideals properly containing no nonzero prime ideal.
Homologie (mathématiques)En mathématiques, l'homologie est une manière générale d'associer une séquence d'objets algébriques tels que des groupes abéliens ou des modules à d'autres objets mathématiques tels que des espaces topologiques. Les groupes d'homologie ont été définis à l'origine dans la topologie algébrique. Des constructions similaires sont disponibles dans beaucoup d'autres contextes, tels que l'algèbre abstraite, les groupes, les algèbres de Lie, la théorie de Galois et la géométrie algébrique.
Regular schemeIn algebraic geometry, a regular scheme is a locally Noetherian scheme whose local rings are regular everywhere. Every smooth scheme is regular, and every regular scheme of finite type over a perfect field is smooth. For an example of a regular scheme that is not smooth, see Geometrically regular ring#Examples.