Inégalité de ChernoffEn théorie des probabilités, l'inégalité de Chernoff permet de majorer la queue d'une loi de probabilité, c'est-à-dire qu'elle donne une valeur maximale de la probabilité qu'une variable aléatoire dépasse une valeur fixée. On parle également de borne de Chernoff. Elle est nommée ainsi en l'honneur du mathématicien Herman Chernoff. Elle est comparable à l'inégalité de Markov mais donne une borne exponentielle. Il existe de nombreux énoncés, et de nombreux cas particuliers.
Arbre splayUn arbre splay (ou arbre évasé) est un arbre binaire de recherche auto-équilibré possédant en outre la propriété que les éléments auxquels on a récemment accédé (pour les ajouter, les regarder ou les supprimer) sont rapidement accessibles. Ils disposent ainsi d'une complexité amortie en O(log n) pour les opérations courantes comme insertion, recherche ou suppression. Ainsi dans le cas où les opérations possèdent une certaine structure, ces arbres constituent des bases de données ayant de bonnes performances, et ceci reste vrai même si cette structure est a priori inconnue.
Arbre binaire de rechercheEn informatique, un arbre binaire de recherche ou ABR (en anglais, binary search tree ou BST) est une structure de données représentant un ensemble ou un tableau associatif dont les clés appartiennent à un ensemble totalement ordonné. Un arbre binaire de recherche permet des opérations rapides pour rechercher une clé, insérer ou supprimer une clé.
Loi de probabilité d'entropie maximaleEn statistique et en théorie de l'information, une loi de probabilité d'entropie maximale a une entropie qui est au moins aussi grande que celle de tous les autres membres d'une classe spécifiée de lois de probabilité. Selon le principe d'entropie maximale, si rien n'est connu sur une loi , sauf qu'elle appartient à une certaine classe (généralement définie en termes de propriétés ou de mesures spécifiées), alors la loi avec la plus grande entropie doit être choisie comme la moins informative par défaut.
Arbre AVLEn informatique théorique, les arbres AVL ont été historiquement les premiers arbres binaires de recherche automatiquement équilibrés. Dans un arbre AVL, les hauteurs des deux sous-arbres d'un même nœud diffèrent au plus de un. La recherche, l'insertion et la suppression sont toutes en dans le pire des cas. L'insertion et la suppression nécessitent d'effectuer des rotations. La dénomination « arbre AVL » provient des noms respectifs de ses deux inventeurs, respectivement et , qui l'ont publié en 1962 sous le titre An Algorithm for the Organization of Information.
Loi log-normaleEn théorie des probabilités et statistique, une variable aléatoire X est dite suivre une loi log-normale de paramètres et si la variable suit une loi normale d'espérance et de variance . Cette loi est parfois appelée loi de Galton. Elle est habituellement notée dans le cas d'une seule variable ou dans un contexte multidimensionnel. Une variable peut être modélisée par une loi log-normale si elle est le résultat de la multiplication d'un grand nombre de petits facteurs indépendants.
Séparation et évaluationUn algorithme par séparation et évaluation, ou branch and bound en anglais, est une méthode générique de résolution de problèmes d'optimisation combinatoire. Cet algorithme a été introduit par Ailsa Land et Alison Harcourt (Doig) en 1960. L'optimisation combinatoire consiste à trouver un point minimisant une fonction, appelée coût, dans un ensemble dénombrable. Une méthode naïve pour résoudre ce problème est d'énumérer toutes les solutions du problème, de calculer le coût pour chacune, puis de donner le minimum.
Inégalité de concentrationDans la théorie des probabilités, les inégalités de concentration fournissent des bornes sur la probabilité qu'une variable aléatoire dévie d'une certaine valeur (généralement l'espérance de cette variable aléatoire). Par exemple, la loi des grands nombres établit qu'une moyenne de variables aléatoires i.i.d. est, sous réserve de vérifier certaines conditions, proche de leur espérance commune. Certains résultats récents vont plus loin, en montrant que ce comportement est également vérifié par d'autres fonctions de variables aléatoires indépendantes.
Loi de NakagamiEn théorie des probabilités et en statistique, la loi de Nakagami ou loi de m-Nakagami est une loi de probabilité continue à deux paramètres et de support . Le paramètre est un paramètre de forme, le second paramètre permet de contrôler la propagation. Cette loi est liée à la loi gamma, son nom est issu du statisticien Minoru Nakagami. La densité de probabilité de la loi de Nakagami est donnée par : où est la fonction Gamma. Sa fonction de répartition est : où P est la fonction gamma incomplète (régularisée).
Majorant ou minorantEn mathématiques, soient (E , ≤) un ensemble ordonné et F une partie de E ; un élément x de E est : un majorant de F s'il est supérieur ou égal, par la relation binaire définie au préalable, à tous les éléments de F : ; un minorant de F s'il est inférieur ou égal, par la relation binaire définie au préalable, à tous les éléments de F :. Si F possède un majorant x alors on dit que F est une partie majorée. Si F possède un minorant x alors on dit que F est une partie minorée.