Programmation fonctionnelleLa programmation fonctionnelle est un paradigme de programmation de type déclaratif qui considère le calcul en tant qu'évaluation de fonctions mathématiques. Comme le changement d'état et la mutation des données ne peuvent pas être représentés par des évaluations de fonctions la programmation fonctionnelle ne les admet pas, au contraire elle met en avant l'application des fonctions, contrairement au modèle de programmation impérative qui met en avant les changements d'état.
Homogeneous coordinate ringIn algebraic geometry, the homogeneous coordinate ring R of an algebraic variety V given as a subvariety of projective space of a given dimension N is by definition the quotient ring R = K[X0, X1, X2, ..., XN] / I where I is the homogeneous ideal defining V, K is the algebraically closed field over which V is defined, and K[X0, X1, X2, ..., XN] is the polynomial ring in N + 1 variables Xi. The polynomial ring is therefore the homogeneous coordinate ring of the projective space itself, and the variables are the homogeneous coordinates, for a given choice of basis (in the vector space underlying the projective space).
Anneau (mathématiques)vignette|Richard Dedekind - 1870 En algèbre, un anneau est un ensemble muni de deux lois de composition interne appelées addition et multiplication, qui vérifient des propriétés analogues à celles de ces opérations sur les entiers relatifs. Plus précisément, deux définitions sont représentées dans la littérature mathématique, selon la considération d'un élément neutre : la majorité des sources récentes définissent un « anneau » comme un anneau unitaire, avec la multiplication ayant un élément neutre ; tandis que, selon de nombreux ouvrages, la présence d'une unité multiplicative n'est pas requise, et ce type d'anneau est ailleurs dénommé pseudo-anneau.
Polynôme minimal d'un endomorphismeLe polynôme minimal est un outil qui permet d'utiliser en algèbre linéaire des résultats de la théorie des polynômes. Il est en effet possible d'appliquer un polynôme à un endomorphisme, comme expliqué dans l'article intérêt du concept de polynôme d'endomorphisme. Il est défini comme le polynôme unitaire (son coefficient de plus haut degré est égal à 1) de plus petit degré qui annule un endomorphisme, c'est-à-dire une application linéaire d'un espace vectoriel dans lui-même.
Théorie des invariantsEn mathématiques, la théorie des invariants, initiée et développée en particulier par Arthur Cayley, James Joseph Sylvester, Charles Hermite, Paul Gordan et de nombreux autres mathématiciens, est l'étude des invariants des formes algébriques (de façon équivalente, des tenseurs symétriques) pour les actions de groupe lors des transformations linéaires. À la fin du , elle est au centre d'un important effort de recherche lorsqu'il apparaît qu'elle pourrait être la clé de voûte en algorithmique (en compétition avec d'autres formulations mathématiques de l'invariance de la symétrie).
Programmation procéduraleEn informatique, la programmation procédurale est un paradigme qui se fonde sur le concept d'appel procédural. Une procédure, aussi appelée routine, sous-routine ou fonction (à ne pas confondre avec les fonctions de la programmation fonctionnelle reposant sur des fonctions mathématiques), contient simplement une série d'étapes à réaliser. N'importe quelle procédure peut être appelée à n'importe quelle étape de l'exécution du programme, y compris à l'intérieur d'autres procédures, voire dans la procédure elle-même (récursivité).
Polynôme irréductibleIn mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the field to which the coefficients of the polynomial and its possible factors are supposed to belong. For example, the polynomial x2 − 2 is a polynomial with integer coefficients, but, as every integer is also a real number, it is also a polynomial with real coefficients.
Équation polynomialeEn mathématiques, une équation polynomiale, ou équation algébrique, est une équation de la forme : où P est un polynôme. Voici un exemple d'équation simple avec une seule inconnue : Usuellement, le terme équation polynomiale désigne une équation avec une seule inconnue (notée ici x) : où l'entier naturel n et les , appelés coefficients de l’équation, sont connus. Les coefficients sont le plus souvent des nombres réels ou complexes, mais ils peuvent prendre leurs valeurs dans n’importe quel anneau.
Fixed-point subringIn algebra, the fixed-point subring of an automorphism f of a ring R is the subring of the fixed points of f, that is, More generally, if G is a group acting on R, then the subring of R is called the fixed subring or, more traditionally, the ring of invariants under G. If S is a set of automorphisms of R, the elements of R that are fixed by the elements of S form the ring of invariants under the group generated by S. In particular, the fixed-point subring of an automorphism f is the ring of invariants of the cyclic group generated by f.
AssociativitéEn mathématiques, et plus précisément en algèbre générale, une loi de composition interne ou loi interne sur un ensemble E est dite associative si pour tous x, y et z dans E : En notant , l'associativité se traduit par le diagramme commutatif suivant : Parmi les lois associatives, on peut citer les lois d'addition et de multiplication des nombres réels, des nombres complexes et des matrices carrées, l'addition des vecteurs, et l'intersection, la réunion d'ensembles.