Espace de modulesEn mathématiques, un espace de modules est un espace paramétrant les diverses classes d'objets sous une relation d'équivalence ; l'intérêt est de pouvoir alors munir naturellement ces espaces de classes d'une structure supplémentaire. L'archétype de cette situation est la classification des courbes elliptiques par les points d'une courbe modulaire. Autre exemple : en géométrie différentielle, l'espace de modules d'une variété est l'espace des paramètres définissant la géométrie modulo les difféomorphismes locaux et globaux.
Torevignette|Modélisation d'un tore Un tore est un solide géométrique représentant un tube courbé refermé sur lui-même. Le terme « tore » comporte différentes acceptions plus spécifiques selon le contexte : en ingénierie ou en géométrie élémentaire, un tore est un solide de révolution de l'espace obtenu à partir d'un cercle, ou bien sa surface. Une chambre à air, une bouée, certains joints d'étanchéité ou encore certains beignets (les donuts nord-américains) ont ainsi une forme plus ou moins torique ; en architecture, un tore correspond à une moulure ronde, semi-cylindrique.
Surface de RiemannEn géométrie différentielle et géométrie analytique complexe, une surface de Riemann est une variété complexe de dimension 1. Cette notion a été introduite par Bernhard Riemann pour prendre en compte les singularités et les complications topologiques qui accompagnent certains prolongements analytiques de fonctions holomorphes. Par oubli de structure, une surface de Riemann se présente comme une variété différentielle réelle de dimension 2, d'où le nom surface. Elles ont été nommées en hommage au mathématicien allemand Bernhard Riemann.
Moduli schemeIn mathematics, a moduli scheme is a moduli space that exists in the developed by Alexander Grothendieck. Some important moduli problems of algebraic geometry can be satisfactorily solved by means of scheme theory alone, while others require some extension of the 'geometric object' concept (algebraic spaces, algebraic stacks of Michael Artin). Work of Grothendieck and David Mumford (see geometric invariant theory) opened up this area in the early 1960s.
Moduli of algebraic curvesIn algebraic geometry, a moduli space of (algebraic) curves is a geometric space (typically a scheme or an algebraic stack) whose points represent isomorphism classes of algebraic curves. It is thus a special case of a moduli space. Depending on the restrictions applied to the classes of algebraic curves considered, the corresponding moduli problem and the moduli space is different. One also distinguishes between fine and coarse moduli spaces for the same moduli problem.
Géométrie différentielle des surfacesEn mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l'espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies éventuellement de structures supplémentaires, le plus souvent une métrique riemannienne. Outre les surfaces classiques de la géométrie euclidienne (sphères, cônes, cylindres, etc.
Variété riemannienneEn mathématiques, et plus précisément en géométrie, la variété riemannienne est l'objet de base étudié en géométrie riemannienne. Il s'agit d'une variété, c'est-à-dire un espace courbe généralisant les courbes (de dimension 1) ou les surfaces (de dimension 2) à une dimension n quelconque, et sur laquelle il est possible d'effectuer des calculs de longueur. En termes techniques, une variété riemannienne est une variété différentielle munie d'une structure supplémentaire appelée métrique riemannienne permettant de calculer le produit scalaire de deux vecteurs tangents à la variété en un même point.
Stack (mathematics)In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist. Descent theory is concerned with generalisations of situations where isomorphic, compatible geometrical objects (such as vector bundles on topological spaces) can be "glued together" within a restriction of the topological basis.
ToroidIn mathematics, a toroid is a surface of revolution with a hole in the middle. The axis of revolution passes through the hole and so does not intersect the surface. For example, when a rectangle is rotated around an axis parallel to one of its edges, then a hollow rectangle-section ring is produced. If the revolved figure is a circle, then the object is called a torus. The term toroid is also used to describe a toroidal polyhedron. In this context a toroid need not be circular and may have any number of holes.
Toroidal polyhedronIn geometry, a toroidal polyhedron is a polyhedron which is also a toroid (a g-holed torus), having a topological genus (g) of 1 or greater. Notable examples include the Császár and Szilassi polyhedra. Toroidal polyhedra are defined as collections of polygons that meet at their edges and vertices, forming a manifold as they do. That is, each edge should be shared by exactly two polygons, and at each vertex the edges and faces that meet at the vertex should be linked together in a single cycle of alternating edges and faces, the link of the vertex.