Propriété personnelleLa propriété personnelle (en anglais personal property) est un type de propriété hérité du droit romain qu'on retrouve aujourd'hui dans le système de droit anglais dit de Common law mais qui ne correspond à aucune classification française. La propriété personnelle porte sur des biens mobiliers corporels ou non, et se distingue de la « propriété réelle » (real property) qui porte sur l'immobilier. En droit romain, la propriété personnelle est appelée propriété mobilière (n'importe quelle chose qui peut être déplacée d'un endroit à un autre).
Équation aux dérivées partiellesEn mathématiques, plus précisément en calcul différentiel, une équation aux dérivées partielles (parfois appelée équation différentielle partielle et abrégée en EDP) est une équation différentielle dont les solutions sont les fonctions inconnues dépendant de plusieurs variables vérifiant certaines conditions concernant leurs dérivées partielles. Une EDP a souvent de très nombreuses solutions, les conditions étant moins strictes que dans le cas d'une équation différentielle ordinaire à une seule variable ; les problèmes comportent souvent des conditions aux limites qui restreignent l'ensemble des solutions.
Fixed-point theorems in infinite-dimensional spacesIn mathematics, a number of fixed-point theorems in infinite-dimensional spaces generalise the Brouwer fixed-point theorem. They have applications, for example, to the proof of existence theorems for partial differential equations. The first result in the field was the Schauder fixed-point theorem, proved in 1930 by Juliusz Schauder (a previous result in a different vein, the Banach fixed-point theorem for contraction mappings in complete metric spaces was proved in 1922). Quite a number of further results followed.
Banach fixed-point theoremIn mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach-Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self-maps of metric spaces, and provides a constructive method to find those fixed points. It can be understood as an abstract formulation of Picard's method of successive approximations. The theorem is named after Stefan Banach (1892–1945) who first stated it in 1922.
Activités en immobilierL'activité en immobilier est une expression définissant et incluant toute activité commerciale ou privée ayant trait aux biens immobiliers. Le terme désigne communément les activités de gestion et transaction s'opérant sur ces biens, mais il touche également de nombreuses activités connexes telles que : le logement, la construction, la promotion, le conseil, l'urbanisme, l'architecture, la gérance, etc. Le droit et la finance sont des domaines d'activité indispensables au fonctionnement du marché de l’immobilier.
Espace homogèneEn géométrie, un espace homogène est un espace sur lequel un groupe agit de façon transitive. Dans l'optique du programme d'Erlangen, le groupe représente des symétries préservant la géométrie de l'espace, et le caractère homogène se manifeste par l'indiscernabilité des points, et exprime une notion disotropie. Les éléments de l'espace forment une seule orbite selon G. Les espaces des géométries classiques (en dimension finie quelconque) de points sont des espaces homogènes pour leur groupe de symétries.
Coordonnées homogènesEn mathématiques, et plus particulièrement en géométrie projective, les coordonnées homogènes (ou coordonnées projectives), introduites par August Ferdinand Möbius, rendent les calculs possibles dans l'espace projectif, comme les coordonnées cartésiennes le font dans l'espace euclidien. Les coordonnées homogènes sont largement utilisées en infographie et plus particulièrement pour la représentation de scènes en trois dimensions, car elles sont adaptées à la géométrie projective et elles permettent de caractériser les transformations de l'espace.
IEEE 802.11thumb|right|200px|Exemple d'équipement fabriqué conformément aux recommandations de la norme IEEE 802.11. Ici, un routeur avec switch 4 ports intégré de la marque Linksys. IEEE 802.11 est un ensemble de normes concernant les réseaux sans fil locaux (le Wi-Fi). Il a été mis au point par le groupe de travail 11 du comité de normalisation LAN/MAN de l'IEEE (IEEE 802). Le terme IEEE 802.11 est également utilisé pour désigner la norme d'origine 802.11, et qui est parfois appelée (legacy mode en anglais signifie dans ce contexte : mode historique ou antérieur).
Adresse MACUne adresse MAC (de l'anglais Media Access Control), parfois nommée adresse physique, est un identifiant physique stocké dans une carte réseau ou une interface réseau similaire. Elle est unique au monde. Toutes les cartes réseau ont une adresse MAC, même celles contenues dans les PC et autres appareils connectés (tablette tactile, smartphone, consoles de jeux, réfrigérateurs, montres). MAC constitue la partie inférieure de la couche de liaison (couche 2 du modèle OSI). Elle insère et traite ces adresses au sein des trames transmises.
Condition aux limites de DirichletEn mathématiques, une condition aux limites de Dirichlet (nommée d’après Johann Dirichlet) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Dirichlet sur l'intervalle s'exprime par : où et sont deux nombres donnés.