Méandrevignette|redresse=1.5| d'un cours d'eau représentant ses méandres : (A) mouille de concavité, (B) banc de convexité développé le long de la rive convexe, (C) situé au points d'inflexion de la courbure, 1-1' profil en travers, (E) rive concave. vignette|Méandrement. vignette|Méandres, bras morts et chevelu résultent de la dynamique naturelle des fleuves en plaine vignette|Dans les pays dits développés, depuis 500 ans au moins les méandres et bras morts tendent à disparaître, au profit d'axes navigables et canalisés dont les fonctions écologiques sont très dégradées (par ex.
Dynamique des fluidesLa dynamique des fluides (hydrodynamique ou aérodynamique), est l'étude des mouvements des fluides, qu'ils soient liquides ou gazeux. Elle fait partie de la mécanique des fluides avec l'hydrostatique (statique des fluides). La résolution d'un problème de dynamique des fluides demande de calculer diverses propriétés des fluides comme la vitesse, la viscosité, la densité, la pression et la température en tant que fonctions de l'espace et du temps.
Rayon de courburevignette|Rayon de courbure d'un tracé. Le rayon de courbure d'un tracé, en général noté ρ (lettre grecque rhô) indique son niveau d'incurvation : plus le rayon de courbure est élevé, plus le tracé se rapproche d'une ligne droite, et inversement. Mathématiquement, le rayon de courbure est la valeur absolue du rayon du cercle tangent à la courbe au point recherché, cercle qui y « épouse cette courbe le mieux possible ». Ce cercle est appelé cercle osculateur à la courbe en ce point.
Rivièrevignette|redresse|Après le torrent se forme la rivière (Hautes-Pyrénées). vignette|Phénomène de surcreusement du lit majeur, pouvant participer à un phénomène d'aridification, le niveau piézométrique de la nappe descendant avec celui de la rivière (Bardenas Reales). vignette|Le Waver (Pays-Bas). vignette|Embouchure de la rivière Batiscan (Québec) En hydrographie, une rivière est un cours d'eau au débit moyen à modéré (supérieur à ), recevant des affluents et qui se jette dans une autre rivière ou dans un fleuve.
Théorie des écoulements à potentiel de vitessevignette|Diagrammes plan d'écoulement des fluides autour d'un cylindre et d'un profil d'aile En mécanique des fluides, la théorie des écoulements à potentiel de vitesse est une théorie des écoulements de fluide où la viscosité est négligée. Elle est très employée en hydrodynamique. La théorie se propose de résoudre les équations de Navier-Stokes dans les conditions suivantes : l'écoulement est stationnaire le fluide n'est pas visqueux il n'y a pas d'action externe (flux de chaleur, électromagnétisme, gravité .
Secondary flowIn fluid dynamics, flow can be decomposed into primary flow plus secondary flow, a relatively weaker flow pattern superimposed on the stronger primary flow pattern. The primary flow is often chosen to be an exact solution to simplified or approximated governing equations, such as potential flow around a wing or geostrophic current or wind on the rotating Earth. In that case, the secondary flow usefully spotlights the effects of complicated real-world terms neglected in those approximated equations.
Mean curvature flowIn the field of differential geometry in mathematics, mean curvature flow is an example of a geometric flow of hypersurfaces in a Riemannian manifold (for example, smooth surfaces in 3-dimensional Euclidean space). Intuitively, a family of surfaces evolves under mean curvature flow if the normal component of the velocity of which a point on the surface moves is given by the mean curvature of the surface. For example, a round sphere evolves under mean curvature flow by shrinking inward uniformly (since the mean curvature vector of a sphere points inward).
Variété kählérienneEn mathématiques, une variété kählérienne ou variété de Kähler est une variété différentielle équipée d'une structure unitaire satisfaisant une condition d'intégrabilité. C'est en particulier une variété riemannienne, une variété symplectique et une variété complexe, ces trois structures étant mutuellement compatibles. Les variétés kählériennes sont un objet d'étude naturel en géométrie différentielle complexe. Elles doivent leur nom au mathématicien Erich Kähler. Plusieurs définitions équivalentes existent.
Flow measurementFlow measurement is the quantification of bulk fluid movement. Flow can be measured using devices called flowmeters in various ways. The common types of flowmeters with industrial applications are listed below: Obstruction type (differential pressure or variable area) Inferential (turbine type) Electromagnetic Positive-displacement flowmeters, which accumulate a fixed volume of fluid and then count the number of times the volume is filled to measure flow. Fluid dynamic (vortex shedding) Anemometer Ultrasonic flow meter Mass flow meter (Coriolis force).
Differentiable curveDifferential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus. Many specific curves have been thoroughly investigated using the synthetic approach. Differential geometry takes another path: curves are represented in a parametrized form, and their geometric properties and various quantities associated with them, such as the curvature and the arc length, are expressed via derivatives and integrals using vector calculus.