Coordonnées canoniquesEn mathématiques et en mécanique classique, les coordonnées canoniques sont des ensembles de coordonnées sur l'espace des phases qui peuvent être utilisées pour décrire un système physique à un moment donné dans le temps. Les coordonnées canoniques sont utilisées dans la formulation hamiltonienne de la mécanique classique. Un concept étroitement lié apparaît également en mécanique quantique ; voir le théorème de Stone-von Neumann et les relations de commutation canoniques pour plus de détails.
Particule élémentaireEn physique des particules, une particule élémentaire, ou particule fondamentale, est une particule dont on ne connaît pas la composition : on ne sait pas si elle est constituée d'autres particules plus petites. Les particules élémentaires incluent les fermions fondamentaux (quarks, leptons, et leurs antiparticules, les antiquarks et les antileptons) qui composent la matière et l'antimatière, ainsi que des bosons (bosons de jauge et boson de Higgs) qui sont des vecteurs de forces et jouent un rôle de médiateur dans les interactions élémentaires entre les fermions.
Mouvement (mécanique)Un mouvement, dans le domaine de la mécanique (physique), est le déplacement d'un corps par rapport à un point fixe de l'espace nommé référentiel et à un moment déterminé. Le mouvement est plus spécifiquement l'objet de la cinématique et de la dynamique. On caractérise un mouvement par sa trajectoire et l'évolution de sa vitesse par exemple : le mouvement circulaire uniforme : mouvement d'un point ou de tous les points matériels qui décrit un cercle avec une vitesse constante.
Transformation canoniqueEn mécanique hamiltonienne, une transformation canonique est un changement des coordonnées canoniques (q, p, t) → (Q, P, t) qui conserve la forme des équations de Hamilton, sans pour autant nécessairement conserver le Hamiltonien en lui-même. Les transformations canoniques sont utiles pour les équations de Hamilton-Jacobi (une technique utile pour calculer les quantités conservées) et le théorème de Liouville (à la base de la mécanique statistique classique).
Déplacement (géométrie)In geometry and mechanics, a displacement is a vector whose length is the shortest distance from the initial to the final position of a point P undergoing motion. It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory. A displacement may be identified with the translation that maps the initial position to the final position.
Énergie potentielle électrostatiqueL'énergie potentielle électrostatique (ou simplement énergie électrostatique) d'une charge électrique q placée en un point P baignant dans un potentiel électrique est définie comme le travail à fournir pour transporter cette charge depuis l'infini jusqu'à la position P. Elle vaut donc : si l'on se place dans le cas où les sources générant le potentiel électrique V sont distribuées dans une région bornée de l'espace, ce qui permet d'attribuer une valeur nulle du potentiel à l'infini.
Méthode des vitesses radialesLa méthode des vitesses radiales, également appelée spectroscopie Doppler, vélocimétrie Doppler ou encore spectrovélocimétrie, est une méthode spectroscopique utilisée pour mesurer la vitesse relative d'objets, le long de l'axe de visée. Elle complète les mesures astrométriques (dans le plan du ciel) en donnant la troisième composante de la vitesse. Aujourd'hui, cette technique est notamment utilisée dans la recherche d'exoplanètes, où la précision de cette technique est poussée à l'extrême : la précision aujourd'hui atteinte est de l'ordre du mètre par seconde, voire moins, pour des instruments tels que HARPS.
Équations de Lagrangevignette|Joseph-Louis Lagrange Les équations de Lagrange, découvertes en 1788 par le mathématicien Joseph-Louis Lagrange, sont une reformulation de la mécanique classique. Il s'agit d'une reformulation de l'équation de Newton, qui ne fait pas intervenir les forces de réaction. Pour cela, on exprime les contraintes que subit la particule étudiée sous la forme d'équations du type : Il n'y a qu'une équation si le mouvement est contraint à une surface, deux s'il est contraint à une courbe.
Particule subatomiqueUne particule subatomique est un composant de la matière. Elle a une taille inférieure à celle d'un atome. On distingue les particules élémentaires des particules composites. La branche de la physique qui les étudie est appelée la physique des particules. Modèle standard (physique des particules) La recherche sur les particules subatomiques a permis de mettre en évidence : d'une part, les constituants atomiques tels que les protons, les neutrons et les électrons, ainsi que leurs constituants (notamment les quarks) ; d'autre part, les particules produites par les phénomènes de rayonnement et de dispersion, tels que les photons, les neutrinos, et les muons.
Interaction faiblethumb|right|330px|L'interaction faible déclenche la nucléosynthèse dans les étoiles. L'interaction faible (aussi appelée force faible et parfois force nucléaire faible) est l'une des quatre interactions fondamentales de la nature, les trois autres étant les interactions électromagnétique, forte et gravitationnelle. Elle est responsable de la désintégration radioactive de particules subatomiques et est à l'origine de la fusion nucléaire dans les étoiles.