HermitienPlusieurs entités mathématiques sont qualifiées d'hermitiennes en référence au mathématicien Charles Hermite. Produit scalaire#Généralisation aux espaces vectoriels complexesProduit scalaire hermitien Soit E un espace vectoriel complexe. On dit qu'une application f définie sur E x E dans C est une forme sesquilinéaire à gauche si quels que soient les vecteurs X, Y, Z appartenant à E, et a, b des scalaires : f est semi-linéaire par rapport à la première variable et f est linéaire par rapport à la deuxième variable Une telle forme est dite hermitienne (ou à symétrie hermitienne) si de plus : ou, ce qui est équivalent : Elle est dite hermitienne définie positive si pour tout vecteur .
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Problème NP-completEn théorie de la complexité, un problème NP-complet ou problème NPC (c'est-à-dire un problème complet pour la classe NP) est un problème de décision vérifiant les propriétés suivantes : il est possible de vérifier une solution efficacement (en temps polynomial) ; la classe des problèmes vérifiant cette propriété est notée NP ; tous les problèmes de la classe NP se ramènent à celui-ci via une réduction polynomiale ; cela signifie que le problème est au moins aussi difficile que tous les autres problèmes de l
Matrice inversibleEn mathématiques et plus particulièrement en algèbre linéaire, une matrice inversible (ou régulière ou encore non singulière) est une matrice carrée A pour laquelle il existe une matrice B de même taille n avec laquelle les produits AB et BA sont égaux à la matrice identité. Dans ce cas la matrice B est unique, appelée matrice inverse de A et notée B = A. Cette définition correspond à celle d’élément inversible pour la multiplication dans l’anneau des matrices carrées associé.
IsométrieEn géométrie, une isométrie est une transformation, qui conserve les longueurs et les mesures d’angles, délimités par deux demi‐droites ou bien deux demi‐plans. Autrement dit, une isométrie est une similitude particulière, qui reproduit n’importe quelle figure à l’échelle 1. Ce rapport 1 de longueurs s’appelle le rapport de la similitude. Comme une similitude, une isométrie dite directe conserve l’orientation des figures, tandis qu’une isométrie indirecte inverse leur orientation.
Graphe de CayleyEn mathématiques, un graphe de Cayley (du nom d'Arthur Cayley) est un graphe qui encode la structure d'un groupe. C'est un outil important pour l'étude de la combinatoire et de la géométrie des groupes. Étant donné un groupe et une partie génératrice de ce groupe, le graphe de Cayley Cay(G,S) est construit comme suit : À chaque élément de , on associe un sommet . À chaque élément de , on associe une couleur . Pour tout et , on trace une arête orientée de couleur du sommet vers le sommet .
Matrice échelonnéeEn algèbre linéaire, une matrice est dite échelonnée en lignes si le nombre de zéros précédant la première valeur non nulle d'une ligne augmente strictement ligne par ligne jusqu'à ce qu'il ne reste éventuellement plus que des zéros. Voici un exemple de matrice échelonnée (les désignent des coefficients quelconques, les des pivots, coefficients non nuls) : Une matrice échelonnée est dite matrice échelonnée réduite, ou matrice canonique en lignes, si les pivots valent 1 et si les autres coefficients dans les colonnes des pivots sont nuls.
Scenario optimizationThe scenario approach or scenario optimization approach is a technique for obtaining solutions to robust optimization and chance-constrained optimization problems based on a sample of the constraints. It also relates to inductive reasoning in modeling and decision-making. The technique has existed for decades as a heuristic approach and has more recently been given a systematic theoretical foundation. In optimization, robustness features translate into constraints that are parameterized by the uncertain elements of the problem.
Diagonale principaleEn algèbre linéaire, la diagonale principale d'une matrice carrée est la diagonale qui descend du coin en haut à gauche jusqu'au coin en bas à droite. Par exemple, la matrice carrée d'ordre 3 qui suit a des 1 sur sa diagonale principale : Il s'agit en particulier de la matrice identité d'ordre 3. Ici, la diagonale principale est composée de 1 et on a également 2 diagonales « secondaires » de part et d'autre de la diagonale principale, composées par des 2 et l'autre par des 3.
Matrice binaireUne matrice binaire est une matrice dont les coefficients sont soit 0, soit 1. En général ces coefficients sont les nombres de l'algèbre de Boole dans laquelle on appelle B l'ensemble constitué de deux éléments appelés valeurs de vérité {VRAI, FAUX}. Cet ensemble est aussi noté B = {1, 0} ou B = {⊤, ⊥}. On privilégie souvent la notation B = {1, 0}. Quand on programme des algorithmes utilisant ces matrices, la notation {VRAI, FAUX} peut coexister avec la notation {1, 0} car de nombreux langages acceptent ce polymorphisme.