Matrice de DiracLes matrices de Dirac sont des matrices qui furent introduites par Paul Dirac, lors de la recherche d'une équation d'onde relativiste de l'électron. Le pendant relativiste de l'équation de Schrödinger est l'équation de Klein-Gordon. Celle-ci décrit des particules de spin 0 et ne convient pas pour les électrons qui sont de spin 1/2. Dirac essaya alors de trouver une équation linéaire comme celle de Schrödinger sous la forme : où est une fonction d'onde vectorielle, la masse de la particule, l'hamiltonien, sont respectivement un vecteur de matrices hermitiques et une matrice hermitique, et i désigne l'unité imaginaire.
Produit matricielLe produit matriciel désigne la multiplication de matrices, initialement appelé la « composition des tableaux ». Il s'agit de la façon la plus fréquente de multiplier des matrices entre elles. En algèbre linéaire, une matrice A de dimensions m lignes et n colonnes (matrice m×n) représente une application linéaire ƒ d'un espace de dimension n vers un espace de dimension m. Une matrice colonne V de n lignes est une matrice n×1, et représente un vecteur v d'un espace vectoriel de dimension n. Le produit A×V représente ƒ(v).
Optimization problemIn mathematics, computer science and economics, an optimization problem is the problem of finding the best solution from all feasible solutions. Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete: An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set.
Addition matriciellevignette|Illustration d'une addition matricielle L'addition matricielle est une opération mathématique qui consiste à produire une matrice qui est le résultat de l'addition de deux matrices de même type. L'addition des matrices est définie pour deux matrices de même type. La somme de deux matrices de type (m, n), et , notée A + B, est à nouveau une matrice de type (m, n) obtenue en additionnant les éléments correspondants, i.e., pour tous i, j, Par exemple: L'ensemble des matrices de type (m, n) avec la loi d'addition forment un groupe abélien.
Règle de CramerLa règle de Cramer (ou méthode de Cramer) est un théorème en algèbre linéaire qui donne la solution d'un système de Cramer, c'est-à-dire un système d'équations linéaires avec autant d'équations que d'inconnues et dont le déterminant de la matrice de coefficients est non nul, sous forme de quotients de déterminants. En calcul, la méthode est moins efficace que la méthode de résolution de Gauss pour des grands systèmes (à partir de quatre équations) dont les coefficients dans le premier membre sont explicitement donnés.
Problème P ≟ NPvignette|400px|Représentation visuelle des deux configurations possibles. Le problème P ≟ NP est une conjecture en mathématiques, et plus précisément en informatique théorique, considérée par de nombreux chercheurs comme une des plus importantes conjectures du domaine, et même des mathématiques en général. L'Institut de mathématiques Clay a inclus ce problème dans sa liste des sept problèmes du prix du millénaire, et offre à ce titre un million de dollars à quiconque sera en mesure de démontrer P = NP ou P ≠ NP ou de démontrer que ce n'est pas démontrable.
Complexité dans le pire des casEn informatique, la complexité dans le pire des cas, ou complexité dans le cas le plus défavorable, mesure la complexité (par exemple en temps ou en espace) d'un algorithme dans le pire des cas d'exécution possibles. Elle est exprimée comme une fonction de la taille de l'entrée de l'algorithme. Implicitement, on cherche à construire des algorithmes s'exécutant en utilisant le moins de ressources possible (e.g. le plus vite possible), et il s'agit par conséquent d'une borne supérieure des ressources requises par l'algorithme.
NP (complexité)La classe NP est une classe très importante de la théorie de la complexité. L'abréviation NP signifie « non déterministe polynomial » (« en »). Un problème de décision est dans NP s'il est décidé par une machine de Turing non déterministe en temps polynomial par rapport à la taille de l'entrée. Intuitivement, cela revient à dire qu'on peut vérifier « rapidement » (complexité polynomiale) si une solution candidate est bien solution.
Approximation-preserving reductionIn computability theory and computational complexity theory, especially the study of approximation algorithms, an approximation-preserving reduction is an algorithm for transforming one optimization problem into another problem, such that the distance of solutions from optimal is preserved to some degree. Approximation-preserving reductions are a subset of more general reductions in complexity theory; the difference is that approximation-preserving reductions usually make statements on approximation problems or optimization problems, as opposed to decision problems.
Dualité (optimisation)En théorie de l'optimisation, la dualité ou principe de dualité désigne le principe selon lequel les problèmes d'optimisation peuvent être vus de deux perspectives, le problème primal ou le problème dual, et la solution du problème dual donne une borne inférieure à la solution du problème (de minimisation) primal. Cependant, en général les valeurs optimales des problèmes primal et dual ne sont pas forcément égales : cette différence est appelée saut de dualité. Pour les problèmes en optimisation convexe, ce saut est nul sous contraintes.