Logarithme naturelLe logarithme naturel ou logarithme népérien, ou encore logarithme hyperbolique jusqu'au , transforme, comme les autres fonctions logarithmes, les produits en sommes. L'utilisation de telles fonctions permet de faciliter les calculs comprenant de nombreuses multiplications, divisions et élévations à des puissances rationnelles. Il est souvent noté ln(). Le logarithme naturel ou népérien est dit de base e car ln(e) = 1. Le logarithme népérien d'un nombre x peut également être défini comme la puissance à laquelle il faut élever e pour obtenir x.
LanthanideLes lanthanides sont une famille du tableau périodique comprenant les allant du lanthane () au lutécium (). Avec le scandium et l'yttrium, ces éléments font partie des terres rares. Ils tirent leur nom du lanthane, premier de la famille, en raison de leurs propriétés chimiques très semblables à ce dernier, du moins pour les plus légers d'entre eux. On les désigne parfois sous le symbole chimique collectif Ln, qui représente alors n'importe quel lanthanide. Ce sont tous des éléments du , hormis le lutécium, qui appartient au .
Complexe de coordinationvignette| Le cisplatine est un complexe de coordination du platine() avec deux ligands chlorure et deux ligands ammoniac formant une ammine. C'est l'un des anticancéreux les plus connus. Un complexe de coordination est constitué d'un atome ou d'ion central, généralement métallique, appelé centre de coordination, et d'un réseau de molécules ou d'ions liés, appelés ligands. De nombreux composés contenant des métaux, en particulier ceux qui comprennent des métaux de transition (éléments tels que le titane qui appartiennent au bloc du tableau périodique), sont des complexes de coordination.
Connection (principal bundle)In mathematics, and especially differential geometry and gauge theory, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. A principal G-connection on a principal G-bundle P over a smooth manifold M is a particular type of connection which is compatible with the action of the group G. A principal connection can be viewed as a special case of the notion of an Ehresmann connection, and is sometimes called a principal Ehresmann connection.
Connexion de KoszulEn géométrie différentielle, une connexion (de Koszul) est un opérateur sur les sections d'un fibré vectoriel. Cette notion a été introduite par Jean-Louis Koszul en 1950 et formalise le transport parallèle de vecteurs le long d'une courbe en termes d'équation différentielle ordinaire. Les connexions sont des objets localement définis auxquels sont associées les notions de courbure et de torsion. L'un des exemples les plus simples de connexions de Koszul sans torsion est la connexion de Levi-Civita naturellement définie sur le fibré tangent de toute variété riemannienne.
Connexion (mathématiques)En géométrie différentielle, la connexion est un outil pour réaliser le transport parallèle. Il existe plusieurs présentations qui dépendent de l'utilisation faite. Cette notion a été développée au début des années 1920 par Élie Cartan et Hermann Weyl (avec comme cas particulier celle de connexion affine), puis reformulée en 1951 par Charles Ehresmann et Jean-Louis Koszul. Connexion de Koszul La connexion de Koszul est un opérateur sur des espaces de sections.
Ligand (chimie)Un ligand est un atome, un ion ou une molécule portant des groupes fonctionnels lui permettant de se lier à un ou plusieurs atomes ou ions centraux. Le terme de ligand est le plus souvent utilisé en chimie de coordination et en chimie organométallique (branches de la chimie inorganique). L'interaction métal/ligand est du type acide de Lewis/base de Lewis. La liaison ainsi formée est nommée « liaison covalente de coordination ».
Connexion de Levi-CivitaEn géométrie riemannienne, la connexion de Levi-Civita est une connexion de Koszul naturellement définie sur toute variété riemannienne ou par extension sur toute variété pseudo-riemannienne. Ses propriétés caractérisent la variété riemannienne. Notamment, les géodésiques, courbes minimisant localement la distance riemannienne, sont exactement les courbes pour lesquelles le vecteur vitesse est parallèle. De plus, la courbure de la variété se définit à partir de cette connexion ; des conditions sur la courbure imposent des contraintes topologiques sur la variété.
Connexion affineEn mathématiques, et plus précisément en géométrie différentielle, une connexion affine est un objet géométrique défini sur une variété différentielle, qui connecte des espaces tangents voisins, et permet ainsi à des champs de vecteurs tangents d'être dérivés comme si c'étaient des fonctions définies sur la variété et prenant leurs valeurs dans un unique espace vectoriel.
Série de Taylorthumb|Brook Taylor, dont la série porte le nom. En mathématiques, et plus précisément en analyse, la série de Taylor au point d'une fonction (réelle ou complexe) indéfiniment dérivable en ce point, appelée aussi le développement en série de Taylor de en , est une série entière approchant la fonction autour de , construite à partir de et de ses dérivées successives en . Elles portent le nom de Brook Taylor, qui les a introduites en 1715.