PolyèdreUn polyèdre est une forme géométrique à trois dimensions (un solide géométrique) ayant des faces planes polygonales qui se rencontrent selon des segments de droite qu'on appelle arêtes. Le mot polyèdre, signifiant à plusieurs faces, provient des racines grecques πολύς (polys), « beaucoup » et ἕδρα (hedra), « base », « siège » ou « face ». Un polyèdre est un solide dont toutes les faces sont des polygones. Les côtés de ces polygones sont appelés arêtes. Les extrémités des arêtes sont des points appelés sommets.
Polyèdre quasi régulierUn polyèdre dont les faces sont des polygones réguliers, qui est transitif sur ses sommets, et qui est transitif sur ses arêtes, est dit quasi régulier. Un polyèdre quasi régulier peut avoir des faces de deux sortes seulement, et celles-ci doivent alterner autour de chaque sommet. Pour certains polyèdres quasi réguliers : on utilise un symbole de Schläfli vertical pour représenter le polyèdre quasi régulier combinant les faces du polyèdre régulier {p,q} et celles du dual régulier {q,p} : leur noyau commun.
Liste des polyèdres uniformesCette liste recense les polyèdres uniformes, ainsi que certaines de leurs propriétés. page connexe : Polyèdre régulier Un polyèdre uniforme est un polyèdre dont les faces sont des polygones réguliers et qui est isogonal (c'est-à-dire que pour tout couple de ses sommets, il existe une isométrie du polyèdre qui transforme l'un en l'autre).
Truncation (geometry)In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new facet in place of each vertex. The term originates from Kepler's names for the Archimedean solids. In general any polyhedron (or polytope) can also be truncated with a degree of freedom as to how deep the cut is, as shown in Conway polyhedron notation truncation operation. A special kind of truncation, usually implied, is a uniform truncation, a truncation operator applied to a regular polyhedron (or regular polytope) which creates a resulting uniform polyhedron (uniform polytope) with equal edge lengths.
Stellationdroite|vignette|200px|Exemple de la stellation en trois dimensions, ici un dodécaèdre étoilé En géométrie, la stellation est un procédé de construction de nouveaux polygones (en dimension 2), de nouveaux polyèdres (en 3D), ou, en général, de nouveaux polytopes en dimension n, en étendant les arêtes ou faces planes, généralement de manière symétrique, jusqu'à ce que chacune d'entre elles se rejoignent de nouveau. La nouvelle figure, avec un aspect étoilé, est appelée une stellation de l'original.
Polyèdre uniforme étoiléEn géométrie, un polyèdre uniforme non convexe, ou polyèdre étoilé uniforme, est un polyèdre uniforme auto-coupant. Il peut contenir soit des faces polygonales non convexes, des figures de sommet non convexes ou les deux. Dans l'ensemble complet des 53 polyèdres étoilés uniformes non prismatiques, il y a les 4 réguliers, appelés les solides de Kepler-Poinsot. Il existe aussi deux ensembles infinis de prismes étoilés uniformes et des antiprismes étoilés uniformes. Ici, nous voyons deux exemples de polyèdres
Pavage de l'espaceUn pavage de l'espace est un ensemble de portions de l'espace euclidien de , par exemple des polyèdres, dont l'union est l'espace tout entier, sans interpénétration. Dans cet emploi le terme pavage est une généralisation à trois dimensions du concept de pavage du plan, lequel dérive directement du sens commun de , le recouvrement d'un sol par des pavés jointifs (des blocs de forme grossièrement cubique) : la surface d'un sol pavé se présente comme un assemblage de carrés jointifs.
Steinitz's theoremIn polyhedral combinatorics, a branch of mathematics, Steinitz's theorem is a characterization of the undirected graphs formed by the edges and vertices of three-dimensional convex polyhedra: they are exactly the 3-vertex-connected planar graphs. That is, every convex polyhedron forms a 3-connected planar graph, and every 3-connected planar graph can be represented as the graph of a convex polyhedron. For this reason, the 3-connected planar graphs are also known as polyhedral graphs.
Troisième problème de Hilbertvignette|Illustration de l'invariant de Dehn Le troisième problème de Hilbert est l'un des 23 problèmes de Hilbert. Considéré comme le plus facile, il traite de la géométrie des polyèdres. David Hilbert conjectura que ce n'était pas toujours vrai. Ce fut confirmé dans l'année par son élève, Max Dehn, qui fournit un contre-exemple. Pour le problème analogue concernant les polygones, la réponse est affirmative. Le résultat est connu sous le nom du théorème de Wallace-Bolyai-Gerwien.
Dehn invariantIn geometry, the Dehn invariant is a value used to determine whether one polyhedron can be cut into pieces and reassembled ("dissected") into another, and whether a polyhedron or its dissections can tile space. It is named after Max Dehn, who used it to solve Hilbert's third problem by proving that not all polyhedra with equal volume could be dissected into each other. Two polyhedra have a dissection into polyhedral pieces that can be reassembled into either one, if and only if their volumes and Dehn invariants are equal.