Groupe affineLes automorphismes d'un espace affine A constituent un groupe appelé groupe affine de A et noté GA(A). En notant E l'espace vectoriel qui dirige A, l'application qui à tout automorphisme u de A fait correspondre l'automorphisme f de E associé à u est un morphisme du groupe affine GA(A) dans le groupe linéaire GL(E). Son noyau forme le groupe des translations. GA(A) est isomorphe au produit semi-direct du groupe additif de E par GL(E). Il est donc engendré par les translations, les transvections et les dilatations.
Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Application affineEn géométrie, une application affine est une application entre deux espaces affines qui est compatible avec leur structure. Cette notion généralise celle de fonction affine de R dans R (), sous la forme , où est une application linéaire et est un point. Une bijection affine (qui est un cas particulier de transformation géométrique) envoie les sous-espaces affines, comme les points, les droites ou les plans, sur le même type d'objet géométrique, tout en préservant la notion de parallélisme.
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
NP (complexité)La classe NP est une classe très importante de la théorie de la complexité. L'abréviation NP signifie « non déterministe polynomial » (« en »). Un problème de décision est dans NP s'il est décidé par une machine de Turing non déterministe en temps polynomial par rapport à la taille de l'entrée. Intuitivement, cela revient à dire qu'on peut vérifier « rapidement » (complexité polynomiale) si une solution candidate est bien solution.
Matrice inversibleEn mathématiques et plus particulièrement en algèbre linéaire, une matrice inversible (ou régulière ou encore non singulière) est une matrice carrée A pour laquelle il existe une matrice B de même taille n avec laquelle les produits AB et BA sont égaux à la matrice identité. Dans ce cas la matrice B est unique, appelée matrice inverse de A et notée B = A. Cette définition correspond à celle d’élément inversible pour la multiplication dans l’anneau des matrices carrées associé.
Algorithme de Chanvignette|Exemple d'une enveloppe convexe d'un ensemble de n = 10 points. L'enveloppe contient k = 5 points. En géométrie algorithmique, l'algorithme de Chan nommé d'après son inventeur , est un algorithme sensible à la sortie qui calcule l'enveloppe convexe d'un ensemble de points, en dimension 2 ou 3. La complexité temporelle est où est le nombre de points dans l'enveloppe convexe. En dimension 2, l'algorithme combine un algorithme en (par exemple le parcours de Graham) et la marche de Jarvis afin d'obtenir un algorithme en .
Optimisation linéaire en nombres entiersL'optimisation linéaire en nombres entiers (OLNE) (ou programmation linéaire en nombres entiers (PLNE) ou integer programming (IP) ou Integer Linear Programming (ILP)) est un domaine des mathématiques et de l'informatique théorique dans lequel on considère des problèmes d'optimisation d'une forme particulière. Ces problèmes sont décrits par une fonction de coût et des contraintes linéaires, et par des variables entières.
Calcul de l'enveloppe convexeEn algorithmique géométrique, le calcul de l'enveloppe convexe est un problème algorithmique. Il consiste, étant donné un ensemble de points, à calculer leur enveloppe convexe. L'enveloppe convexe d'un ensemble de points est le plus petit ensemble convexe qui les contient tous. C'est un polyèdre dont les sommets sont des points de l'ensemble. Le calcul de l'enveloppe convexe consiste à calculer une représentation compacte de l'enveloppe, le plus souvent les sommets de celle-ci.
Indépendance linéaireEn algèbre linéaire, étant donné une famille de vecteurs d'un même espace vectoriel, les vecteurs de la famille sont linéairement indépendants, ou forment une famille libre, si la seule combinaison linéaire de ces vecteurs qui soit égale au vecteur nul est celle dont tous les coefficients sont nuls. Cela revient à dire qu'aucun des vecteurs de la famille n'est combinaison linéaire des autres. Dans le cas où des vecteurs ne sont pas linéairement indépendants, on dit qu'ils sont linéairement dépendants, ou qu'ils forment une famille liée.