Glossary of computer graphicsThis is a glossary of terms relating to computer graphics. For more general computer hardware terms, see glossary of computer hardware terms.
Surface régléeEn géométrie, une surface réglée est une surface par chaque point de laquelle passe une droite, appelée génératrice, contenue dans la surface. On peut décrire une surface réglée S en la considérant comme la réunion d'une famille de droites D(u) dépendant d'un paramètre u parcourant une partie I de l'ensemble des réels. Il suffit pour cela de se donner pour chaque u dans I un point P(u) et un vecteur directeur de D(u). On obtient alors une représentation paramétrique de la surface S : L'arc paramétré par est appelé une courbe directrice de S.
Algebraic surfaceIn mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of dimension four as a smooth manifold. The theory of algebraic surfaces is much more complicated than that of algebraic curves (including the compact Riemann surfaces, which are genuine surfaces of (real) dimension two).
Carte de disparitéIn 3D computer graphics and computer vision, a depth map is an or that contains information relating to the distance of the surfaces of scene objects from a viewpoint. The term is related (and may be analogous) to depth buffer, Z-buffer, Z-buffering, and Z-depth. The "Z" in these latter terms relates to a convention that the central axis of view of a camera is in the direction of the camera's Z axis, and not to the absolute Z axis of a scene. File:Cubic Structure.jpg|Cubic Structure File:Cubic Frame Stucture and Floor Depth Map.
Conical combinationGiven a finite number of vectors in a real vector space, a conical combination, conical sum, or weighted sum of these vectors is a vector of the form where are non-negative real numbers. The name derives from the fact that a conical sum of vectors defines a cone (possibly in a lower-dimensional subspace). The set of all conical combinations for a given set S is called the conical hull of S and denoted cone(S) or coni(S). That is, By taking k = 0, it follows the zero vector (origin) belongs to all conical hulls (since the summation becomes an empty sum).
PanoramaUn panorama (mot anglais du , lui-même formé à partir des mots de grec ancien pan ou « παν », tout, et horama ou « ὅραμα », spectacle) est une vue en largeur d'un espace physique. Dans le langage courant, cela veut généralement dire une vue d'un objectif grand angle, que ce soit en photographie, en dessin, en peinture ou au cinéma. Le nom de la figure de panoramique au cinéma dérive du panorama. La plupart des appareils photo numériques ont une option « panoramique assisté » qui permet de prendre la photo suivante avec une partie de la photo précédente visible sur l'écran LCD.
Parcours de grapheEn théorie des graphes, un parcours de graphe est un algorithme consistant à explorer les sommets d'un graphe de proche en proche à partir d'un sommet initial. Un cas particulier important est le parcours d'arbre. Le mot parcours est également utilisé dans un sens différent, comme synonyme de chemin (un parcours fermé étant un circuit). Il existe de nombreux algorithmes de parcours. Les plus couramment décrits sont le parcours en profondeur et le parcours en largeur.
3D rendering3D rendering is the 3D computer graphics process of converting 3D models into 2D images on a computer. 3D renders may include photorealistic effects or non-photorealistic styles. Rendering is the final process of creating the actual 2D image or animation from the prepared scene. This can be compared to taking a photo or filming the scene after the setup is finished in real life. Several different, and often specialized, rendering methods have been developed.
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Mesure (mathématiques)En mathématiques, une mesure positive (ou simplement mesure quand il n'y a pas de risque de confusion) est une fonction qui associe une grandeur numérique à certains sous-ensembles d'un ensemble donné. Il s'agit d'un important concept en analyse et en théorie des probabilités. Intuitivement, la mesure d'un ensemble ou sous-ensemble est similaire à la notion de taille, ou de cardinal pour les ensembles discrets. Dans ce sens, la mesure est une généralisation des concepts de longueur, aire ou volume dans des espaces de dimension 1, 2 ou 3 respectivement.