Canonical formIn mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. Often, it is one which provides the simplest representation of an object and allows it to be identified in a unique way. The distinction between "canonical" and "normal" forms varies from subfield to subfield. In most fields, a canonical form specifies a unique representation for every object, while a normal form simply specifies its form, without the requirement of uniqueness.
Décomposition d'une matrice en éléments propresEn algèbre linéaire, la décomposition d'une matrice en éléments propres est la factorisation de la matrice en une forme canonique où les coefficients matriciels sont obtenus à partir des valeurs propres et des vecteurs propres. Un vecteur non nul v à N lignes est un vecteur propre d'une matrice carrée A à N lignes et N colonnes si et seulement si il existe un scalaire λ tel que : où λ est appelé valeur propre associée à v. Cette dernière équation est appelée « équation aux valeurs propres ».
Definite matrixIn mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector where is the transpose of . More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector where denotes the conjugate transpose of Positive semi-definite matrices are defined similarly, except that the scalars and are required to be positive or zero (that is, nonnegative).
Valeur propre, vecteur propre et espace propreEn mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Generalized permutation matrixIn mathematics, a generalized permutation matrix (or monomial matrix) is a matrix with the same nonzero pattern as a permutation matrix, i.e. there is exactly one nonzero entry in each row and each column. Unlike a permutation matrix, where the nonzero entry must be 1, in a generalized permutation matrix the nonzero entry can be any nonzero value. An example of a generalized permutation matrix is An invertible matrix A is a generalized permutation matrix if and only if it can be written as a product of an invertible diagonal matrix D and an (implicitly invertible) permutation matrix P: i.
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Matrix decompositionIn the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems. In numerical analysis, different decompositions are used to implement efficient matrix algorithms. For instance, when solving a system of linear equations , the matrix A can be decomposed via the LU decomposition.
Matrice par blocsvignette|Un matrice présente une structure par blocs si l'on peut isoler les termes non nuls dans des sous-matrices (ici la structure « diagonale par blocs » d'une réduite de Jordan). On appelle matrice par blocs une matrice divisée en blocs à partir d'un groupement quelconque de termes contigus de sa diagonale. Chaque bloc étant indexé comme on indicerait les éléments d'une matrice, la somme et le produit de deux matrices partitionnées suivant les mêmes tailles de bloc, s'obtiennent avec les mêmes règles formelles que celles des composantes (mais en veillant à l'ordre des facteurs dans les produits matriciels!).
Generalized eigenvectorIn linear algebra, a generalized eigenvector of an matrix is a vector which satisfies certain criteria which are more relaxed than those for an (ordinary) eigenvector. Let be an -dimensional vector space and let be the matrix representation of a linear map from to with respect to some ordered basis. There may not always exist a full set of linearly independent eigenvectors of that form a complete basis for . That is, the matrix may not be diagonalizable.
Produit vectorielEn mathématiques, et plus précisément en géométrie, le produit vectoriel est une opération vectorielle effectuée dans les espaces euclidiens orientés de dimension 3. Le formalisme utilisé actuellement est apparu en 1881 dans un manuel d'analyse vectorielle écrit par Josiah Willard Gibbs pour ses étudiants en physique. Les travaux de Hermann Günther Grassmann et William Rowan Hamilton sont à l'origine du produit vectoriel défini par Gibbs.