Filtre coupe-bandeUn filtre coupe-bande aussi appelé filtre réjecteur de bande ou filtre cloche est un filtre empêchant le passage d'une partie des fréquences. Il est composé d'un filtre passe-haut et d'un filtre passe-bas dont les fréquences de coupure sont souvent proches mais différentes, la fréquence de coupure du filtre passe-bas est systématiquement inférieure à la fréquence de coupure du filtre passe-haut.
Paire de matrices commutantesEn mathématiques, une paire de matrices commutantes est une paire {A, B} de matrices carrées à coefficients dans un corps qui commutent, c'est-à-dire que AB = BA. L'étude des paires de matrices commutantes a des aspects tout à fait élémentaires et d'autres qui font l'objet de recherches en cours. L'énoncé de certains problèmes étudiés est assez élémentaire pour être présenté au niveau de la première année d'études supérieures. En voici un exemple : Une matrice nilpotente est une matrice dont une puissance est nulle.
Elastic net regularizationIn statistics and, in particular, in the fitting of linear or logistic regression models, the elastic net is a regularized regression method that linearly combines the L1 and L2 penalties of the lasso and ridge methods. The elastic net method overcomes the limitations of the LASSO (least absolute shrinkage and selection operator) method which uses a penalty function based on Use of this penalty function has several limitations. For example, in the "large p, small n" case (high-dimensional data with few examples), the LASSO selects at most n variables before it saturates.
Traitement numérique du signalLe traitement numérique du signal étudie les techniques de traitement (filtrage, compression, etc), d'analyse et d'interprétation des signaux numérisés. À la différence du traitement des signaux analogiques qui est réalisé par des dispositifs en électronique analogique, le traitement des signaux numériques est réalisé par des machines numériques (des ordinateurs ou des circuits dédiés). Ces machines numériques donnent accès à des algorithmes puissants, tel le calcul de la transformée de Fourier.
Estimation spectraleL'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP). Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories : Modèles autorégressif (AR) Modèles à moyenne ajustée (MA) Modèles autorégressif à moyenne ajustée (ARMA). L'approche paramétrique se décompose en trois étapes : Choisir un modèle décrivant le processus de manière appropriée.
Filtre à phase linéaireUn filtre à phase linéaire est un filtre dont la réponse en phase est linéaire (modulo ) par rapport à la fréquence. Le délai de groupe pour ce filtre est constant, ce qui signifie que les composantes fréquentielles se voient infligées un même délai - ce délai se réfère au retard de phase. Un système à réponse de phase linéaire ne connaît pas d'effet de distorsion de phase. Un filtre à réponse impulsionnelle finie (RIF) symétrique et dont la transformée de Fourier est une fonction de signe constant est un filtre à phase linéaire.
Ridge regressionRidge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. It has been used in many fields including econometrics, chemistry, and engineering. Also known as Tikhonov regularization, named for Andrey Tikhonov, it is a method of regularization of ill-posed problems. It is particularly useful to mitigate the problem of multicollinearity in linear regression, which commonly occurs in models with large numbers of parameters.
Transformation bilinéaireLa transformation bilinéaire est une méthode de traitement numérique du signal pour la conception de filtres numériques calqués sur des filtres analogiques. Elle permet le passage d'une représentation continue à une représentation discrète des filtres. La transformation bilinéaire est un cas particulier de transformation de Möbius. L'image de la droite imaginaire () est le cercle unité dans le plan complexe.
Complexité de KolmogorovEn informatique théorique et en mathématiques, plus précisément en théorie de l'information, la complexité de Kolmogorov, ou complexité aléatoire, ou complexité algorithmique d'un objet — nombre, , chaîne de caractères — est la taille du plus petit algorithme (dans un certain langage de programmation fixé) qui engendre cet objet. Elle est nommée d'après le mathématicien Andreï Kolmogorov, qui publia sur le sujet dès 1963. Elle est aussi parfois nommée complexité de Kolmogorov-Solomonoff.
ComplexitéLa complexité caractérise le comportement d'un système dont les composants interagissent localement et de façon non linéaire, ce qui se traduit par un comportement difficilement prédictible. La complexité peut donc caractériser un système "composé d'un grand nombre d'éléments interagissant sans coordination centrale, sans plan établi par un architecte, et menant spontanément à l'émergence de structures complexes" (Alain Barrat, directeur de recherche au Centre de physique théorique de Marseille); mais aussi caractériser des systèmes composés de peu d'éléments (voir le chaos déterministe).