Introduction à la mécanique quantiqueLe but de cet article est de présenter une introduction accessible, non technique, au sujet. Pour l'article encyclopédique consulter Mécanique quantique. La mécanique quantique est la science de l'infiniment petit : elle regroupe l'ensemble des travaux scientifiques qui interprètent le comportement des constituants de la matière, et ses interactions avec l'énergie, à l'échelle des atomes et des particules subatomiques. La physique classique décrit la matière et l'énergie à l'échelle humaine, dans leur observation de tous les jours, y compris les corps célestes.
Numerical methods for linear least squaresNumerical methods for linear least squares entails the numerical analysis of linear least squares problems. A general approach to the least squares problem can be described as follows. Suppose that we can find an n by m matrix S such that XS is an orthogonal projection onto the image of X. Then a solution to our minimization problem is given by simply because is exactly a sought for orthogonal projection of onto an image of X (see the picture below and note that as explained in the next section the image of X is just a subspace generated by column vectors of X).
Postulats de la mécanique quantiquevignette|Participants au Congrès Solvay de 1927 sur la mécanique quantique Cet article traite des postulats de la mécanique quantique. La description du monde microscopique que fournit la mécanique quantique s'appuie sur une vision radicalement nouvelle, et s'oppose en cela à la mécanique classique. Elle repose sur des postulats. S'il existe un très large consensus entre les physiciens sur la manière de réaliser les calculs qui permettent de rendre compte des phénomènes quantiques et de prévoir leur évolution, il n'existe pas en revanche de consensus sur une manière unique de les expliquer aux étudiants.
Mécanique célestethumb|Paramètres d'une orbite elliptique. La mécanique céleste décrit le mouvement d'objets astronomiques tels que les étoiles et planètes à l'aide de théories physiques et mathématiques. Les domaines de la physique les plus directement concernés sont la cinématique et la dynamique (classique ou relativiste). Dans l'Antiquité, on distingue la mécanique céleste de la mécanique terrestre, les deux mondes étant considérés comme étant régis par des lois complètement différentes (ici-bas, les « choses » « tombent », là-haut elles se « promènent »).
Mécanique matricielleLa mécanique matricielle est une formulation de la mécanique quantique construite par Werner Heisenberg, Max Born et Pascual Jordan en 1925. La mécanique matricielle est la première définition complète et correcte de la mécanique quantique. Elle prolonge le modèle de Bohr en décrivant la manière dont se produisent les sauts quantiques, en interprétant les propriétés physiques des particules comme des matrices évoluant dans le temps.
Géométrie symplectiqueLa géométrie symplectique est un domaine de la recherche mathématique, s'intéressant à l'origine à une formulation mathématique naturelle de la mécanique classique et développé avec une notion d'entrelacement entre la géométrie différentielle et les systèmes dynamiques, avec des applications en géométrie algébrique, en géométrie riemannienne et en géométrie de contact. Formellement, elle consiste en l'étude des 2-formes différentielles fermées non dégénérées — appelées formes symplectiques — sur les variétés différentielles.
Mécanique des solides déformablesLa est la branche de la mécanique des milieux continus qui étudie le comportement mécanique des matériaux solides, en particulier leurs mouvements et leurs déformations sous l'action de forces, de changements de température, de changements de phase ou d'autres actions externes ou internes. Une application typique de la mécanique des solides déformables consiste à déterminer à partir d'un certaine géométrie solide d'origine et des chargements qui lui sont appliqués, si le corps répond à certaines exigences de résistance et de rigidité.
Conservation de l'énergieLa conservation de l'énergie est un principe physique, selon lequel l'énergie totale d'un système isolé est invariante au cours du temps. Ce principe, largement vérifié expérimentalement, est de première importance en physique, et impose que pour tout phénomène physique l'énergie totale initiale du système isolé soit égale à l'énergie totale finale, donc que de l'énergie passe d'une forme à une autre durant le déroulement du phénomène, sans création ni disparition d'énergie.
Méthodes de Runge-KuttaLes méthodes de Runge-Kutta sont des méthodes d'analyse numérique d'approximation de solutions d'équations différentielles. Elles ont été nommées ainsi en l'honneur des mathématiciens Carl Runge et Martin Wilhelm Kutta, lesquels élaborèrent la méthode en 1901. Ces méthodes reposent sur le principe de l'itération, c'est-à-dire qu'une première estimation de la solution est utilisée pour calculer une seconde estimation, plus précise, et ainsi de suite. Considérons le problème suivant : que l'on va chercher à résoudre en un ensemble discret t < t < .
Probabilistic numericsProbabilistic numerics is an active field of study at the intersection of applied mathematics, statistics, and machine learning centering on the concept of uncertainty in computation. In probabilistic numerics, tasks in numerical analysis such as finding numerical solutions for integration, linear algebra, optimization and simulation and differential equations are seen as problems of statistical, probabilistic, or Bayesian inference.