Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.
Flambagethumb|Flexion sous un effort de compression. Le flambage ou flambement est un phénomène d'instabilité d'une structure élastique qui pour échapper à une charge importante exploite un mode de déformation non sollicité, opposant moins de raideur à la charge. La notion de flambement s'applique généralement à des poutres élancées qui lorsqu'elles sont soumises à un effort normal de compression, ont tendance à fléchir et se déformer dans une direction perpendiculaire à l'axe de compression (passage d'un état de compression à un état de flexion) ; mais elle peut aussi s'appliquer par exemple à des lames de ressort sollicitées en flexion qui se déversent en torsion pour échapper à la charge.
Rupture (matériau)thumb|Courbe de traction idéale d'un matériau ductile thumb|Courbe de traction typique pour un matériau fragile En science des matériaux, la rupture ou fracture d'un matériau est la séparation, partielle (comme une crique ou une fissure ou une brisure) ou complète, en deux ou plusieurs pièces sous l'action d'une contrainte. Une rupture peut être souhaitée par le concepteur de la pièce comme dans le cas de la conception de dispositifs de sécurité ou au contraire celui-ci cherche à éviter cette rupture en mettant en adéquation la fonction de cette pièce avec les dimensionnements et choix des matériaux utilisés et des procédés de fabrication.
Méthode de JacobiLa méthode de Jacobi, due au mathématicien allemand Karl Jacobi, est une méthode itérative de résolution d'un système matriciel de la forme Ax = b. Pour cela, on utilise une suite x qui converge vers un point fixe x, solution du système d'équations linéaires. On cherche à construire, pour x donné, la suite x = F(x) avec . où est une matrice inversible. où F est une fonction affine. La matrice B = MN est alors appelée matrice de Jacobi.
Tableau périodique étenduredresse=1.5|vignette|Tableau périodique étendu proposé par P. Pyykkö. Un tableau périodique étendu est un tableau périodique comportant des éléments chimiques au-delà de la , éléments hypothétiques de numéro atomique supérieur à 118 (correspondant à l'oganesson) classés en fonction de leurs configurations électroniques calculées. Le premier tableau périodique étendu a été théorisé par Glenn Seaborg en 1969 : il prévoyait une contenant du bloc g et une nouvelle famille d'éléments chimiques dite des « superactinides ».
Mécanique des solides déformablesLa est la branche de la mécanique des milieux continus qui étudie le comportement mécanique des matériaux solides, en particulier leurs mouvements et leurs déformations sous l'action de forces, de changements de température, de changements de phase ou d'autres actions externes ou internes. Une application typique de la mécanique des solides déformables consiste à déterminer à partir d'un certaine géométrie solide d'origine et des chargements qui lui sont appliqués, si le corps répond à certaines exigences de résistance et de rigidité.
Biologie structuralevignette|droite|Structure 3D de la myoglobine du grand cachalot (PDB ID 1MBO), la première protéine dont la structure a été résolue par cristallographie aux rayons X par John Kendrew et al. en 1958. La biologie structurale est la branche de la biologie qui étudie la structure et l'organisation spatiale des macromolécules biologiques, principalement les protéines et les acides nucléiques.
Géométrie complexeIn mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.
Distributed-element modelIn electrical engineering, the distributed-element model or transmission-line model of electrical circuits assumes that the attributes of the circuit (resistance, capacitance, and inductance) are distributed continuously throughout the material of the circuit. This is in contrast to the more common lumped-element model, which assumes that these values are lumped into electrical components that are joined by perfectly conducting wires.
Residual stressIn materials science and solid mechanics, residual stresses are stresses that remain in a solid material after the original cause of the stresses has been removed. Residual stress may be desirable or undesirable. For example, laser peening imparts deep beneficial compressive residual stresses into metal components such as turbine engine fan blades, and it is used in toughened glass to allow for large, thin, crack- and scratch-resistant glass displays on smartphones.