Categorical quantum mechanicsCategorical quantum mechanics is the study of quantum foundations and quantum information using paradigms from mathematics and computer science, notably . The primitive objects of study are physical processes, and the different ways that these can be composed. It was pioneered in 2004 by Samson Abramsky and Bob Coecke. Categorical quantum mechanics is entry 18M40 in MSC2020. Mathematically, the basic setup is captured by a : composition of morphisms models sequential composition of processes, and the tensor product describes parallel composition of processes.
Chain (algebraic topology)In algebraic topology, a -chain is a formal linear combination of the -cells in a cell complex. In simplicial complexes (respectively, cubical complexes), -chains are combinations of -simplices (respectively, -cubes), but not necessarily connected. Chains are used in homology; the elements of a homology group are equivalence classes of chains. For a simplicial complex , the group of -chains of is given by: where are singular -simplices of . Note that any element in not necessary to be a connected simplicial complex.
Étale morphismIn algebraic geometry, an étale morphism (etal) is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology.
Localisation d'une catégorieEn mathématiques, et plus précisément en théorie des catégories, la localisation de catégorie est une construction algébrique permettant d'inverser une certaine classe de morphismes. Elle a notamment des applications en topologie algébrique et en géométrie algébrique. Pour une catégorie et une classe de morphismes , la localisation de par rapport à est la catégorie universelle où tous les morphismes de sont inversibles.
Catégorie des ensemblesEn mathématiques, plus précisément en théorie des catégories, la catégorie des ensembles, notée Set ou Ens, est la catégorie dont les objets sont les ensembles, et dont les morphismes sont les applications d'un ensemble dans un autre. Sa définition est motivée par le fait qu'en théorie des ensembles usuelle, il n'existe pas d'« ensemble de tous les ensembles », car l'existence d'un tel objet résulterait en une contradiction logique : le paradoxe de Russell.
∞-groupoidIn , a branch of mathematics, an ∞-groupoid is an abstract homotopical model for topological spaces. One model uses Kan complexes which are fibrant objects in the category of simplicial sets (with the standard ). It is an generalization of a groupoid, a category in which every morphism is an isomorphism. The homotopy hypothesis states that ∞-groupoids are equivalent to spaces up to homotopy. Alexander Grothendieck suggested in Pursuing Stacks that there should be an extraordinarily simple model of ∞-groupoids using globular sets, originally called hemispherical complexes.
Catégorie de foncteursUne catégorie de foncteurs ou catégorie des foncteurs entre deux catégories est une catégorie dont les objets sont les foncteurs entre ces catégories, et les morphismes sont les transformations naturelles entre ces foncteurs. Soient et des catégories. On définit la catégorie de foncteurs de dans , notée , ou parfois ou : Les objets de sont les foncteurs de dans ; Les morphismes sont les transformations naturelles. Il existe, pour tout objet F, un morphisme correspondant à l'identité incarné par le foncteur .
CofibrationEn mathématiques, une cofibration est une application qui satisfait la propriété d'extension des homotopies, ce qui est le cas pour les inclusions de CW-complexes. Le quotient de l'espace but par l'espace source est alors appelé cofibre de l'application. L'inclusion dans le cylindre d'application permet de remplacer une application continue entre deux espaces topologiques par une cofibration homotopiquement équivalente. La cofibre est alors appelée cofibre homotopique de l'application initiale.
Smooth morphismIn algebraic geometry, a morphism between schemes is said to be smooth if (i) it is locally of finite presentation (ii) it is flat, and (iii) for every geometric point the fiber is regular. (iii) means that each geometric fiber of f is a nonsingular variety (if it is separated). Thus, intuitively speaking, a smooth morphism gives a flat family of nonsingular varieties. If S is the spectrum of an algebraically closed field and f is of finite type, then one recovers the definition of a nonsingular variety.
Algèbre de HeytingEn mathématiques, une algèbre de Heyting est une structure algébrique introduite en 1930 par le mathématicien néerlandais Arend Heyting pour rendre compte formellement de la logique intuitionniste de Brouwer, alors récemment développée. Les algèbres de Heyting sont donc pour la logique intuitionniste analogue à ce que sont des algèbres de Boole pour la logique classique : un modèle formel permettant d'en fixer les propriétés.