Méthode des variables instrumentalesEn statistique et en économétrie, la méthode des variables instrumentales est une méthode permettant d'identifier et d'estimer des relations causales entre des variables. Cette méthode est très souvent utilisée en économétrie. Le modèle de régression linéaire simple fait l'hypothèse que les variables explicatives sont statistiquement indépendantes du terme d'erreur. Par exemple, si on pose le modèle avec x la variable explicative et u le terme d'erreur, on suppose généralement que x est exogène, c'est-à-dire que .
Méthode des moindres carrés ordinairevignette|Graphique d'une régression linéaire La méthode des moindres carrés ordinaire (MCO) est le nom technique de la régression mathématique en statistiques, et plus particulièrement de la régression linéaire. Il s'agit d'un modèle couramment utilisé en économétrie. Il s'agit d'ajuster un nuage de points selon une relation linéaire, prenant la forme de la relation matricielle , où est un terme d'erreur.
Errors-in-variables modelsIn statistics, errors-in-variables models or measurement error models are regression models that account for measurement errors in the independent variables. In contrast, standard regression models assume that those regressors have been measured exactly, or observed without error; as such, those models account only for errors in the dependent variables, or responses. In the case when some regressors have been measured with errors, estimation based on the standard assumption leads to inconsistent estimates, meaning that the parameter estimates do not tend to the true values even in very large samples.
Volatilité stochastiqueLa volatilité stochastique est utilisée dans le cadre de la finance quantitative, pour évaluer des produits dérivés, tels que des options. Le nom provient du fait que le modèle traite la volatilité du sous-jacent comme un processus aléatoire, fonction de variables d'états telles que le prix du sous-jacent, la tendance qu'a la volatilité, à moyen terme, à faire revenir le prix vers une valeur moyenne, la variance du processus de la volatilité, etc.
Generalized least squaresIn statistics, generalized least squares (GLS) is a method used to estimate the unknown parameters in a linear regression model when there is a certain degree of correlation between the residuals in the regression model. Least squares and weighted least squares may need to be more statistically efficient and prevent misleading inferences. GLS was first described by Alexander Aitken in 1935. In standard linear regression models one observes data on n statistical units.
HétéroscédasticitéEn statistique, l'on parle d'hétéroscédasticité lorsque les variances des résidus des variables examinées sont différentes. Le mot provient du grec, composé du préfixe hétéro- (« autre »), et de skedasê (« dissipation»). Une collection de variables aléatoires est hétéroscédastique s'il y a des sous-populations qui ont des variabilités différentes des autres. La notion d'hétéroscédasticité s'oppose à celle d'homoscédasticité. Dans le second cas, la variance de l'erreur des variables est constante i.e. .
Heteroskedasticity-consistent standard errorsThe topic of heteroskedasticity-consistent (HC) standard errors arises in statistics and econometrics in the context of linear regression and time series analysis. These are also known as heteroskedasticity-robust standard errors (or simply robust standard errors), Eicker–Huber–White standard errors (also Huber–White standard errors or White standard errors), to recognize the contributions of Friedhelm Eicker, Peter J. Huber, and Halbert White.
Crise des Savings and loanPrécédée par la période des junk bonds et du krach de 1987, la crise des Savings and loan, les caisses d'épargne américaines, s'est déclenchée en 1987 en raison d'investissement hasardeux dans l'immobilier, pour profiter d'avantages fiscaux qui permettaient de meilleures plus-values. Plus de institutions assurées ont fait faillite à partir de 1985. La guerre du Golfe précipita la crise : de juin à , l'indice boursier américain S&P 500, ajusté de l'inflation, chuta de 15 %.
Volatility smileVolatility smiles are implied volatility patterns that arise in pricing financial options. It is a parameter (implied volatility) that is needed to be modified for the Black–Scholes formula to fit market prices. In particular for a given expiration, options whose strike price differs substantially from the underlying asset's price command higher prices (and thus implied volatilities) than what is suggested by standard option pricing models. These options are said to be either deep in-the-money or out-of-the-money.
Théorème de Gauss-MarkovEn statistiques, le théorème de Gauss–Markov, nommé ainsi d'après Carl Friedrich Gauss et Andrei Markov, énonce que dans un modèle linéaire dans lequel les erreurs ont une espérance nulle, sont non corrélées et dont les variances sont égales, le meilleur estimateur linéaire non biaisé des coefficients est l'estimateur des moindres carrés. Plus généralement, le meilleur estimateur linéaire non biaisé d'une combinaison linéaire des coefficients est son estimateur par les moindres carrés.