Théorie du contrôleEn mathématiques et en sciences de l'ingénieur, la théorie du contrôle a comme objet l'étude du comportement de systèmes dynamiques paramétrés en fonction des trajectoires de leurs paramètres. On se place dans un ensemble, l'espace d'état sur lequel on définit une dynamique, c'est-à-dire une loi mathématiques caractérisant l'évolution de variables (dites variables d'état) au sein de cet ensemble. Le déroulement du temps est modélisé par un entier .
Circuit en boucle ouverteEn régulation, un système en boucle ouverte ou contrôle ouvert est une forme de contrôle d'un système qui ne prend pas en compte la réponse de ce système (appelée rétroaction, en anglais : feedback). Ce contrôle, simple en principe, est à utiliser avec précaution si le système est naturellement instable. Pour le mettre en place il faut au préalable avoir parfaitement modélisé le système, que la commande soit parfaitement adaptée et qu'il n'y ait aucune perturbation.
Optimisation linéairethumb|upright=0.5|Optimisation linéaire dans un espace à deux dimensions (x1, x2). La fonction-coût fc est représentée par les lignes de niveau bleues à gauche et par le plan bleu à droite. L'ensemble admissible E est le pentagone vert. En optimisation mathématique, un problème d'optimisation linéaire demande de minimiser une fonction linéaire sur un polyèdre convexe. La fonction que l'on minimise ainsi que les contraintes sont décrites par des fonctions linéaires, d'où le nom donné à ces problèmes.
Optimisation linéaire en nombres entiersL'optimisation linéaire en nombres entiers (OLNE) (ou programmation linéaire en nombres entiers (PLNE) ou integer programming (IP) ou Integer Linear Programming (ILP)) est un domaine des mathématiques et de l'informatique théorique dans lequel on considère des problèmes d'optimisation d'une forme particulière. Ces problèmes sont décrits par une fonction de coût et des contraintes linéaires, et par des variables entières.
Feasible regionIn mathematical optimization, a feasible region, feasible set, search space, or solution space is the set of all possible points (sets of values of the choice variables) of an optimization problem that satisfy the problem's constraints, potentially including inequalities, equalities, and integer constraints. This is the initial set of candidate solutions to the problem, before the set of candidates has been narrowed down.
Optimisation non linéaireEn optimisation, vue comme branche des mathématiques, l'optimisation non linéaire (en anglais : nonlinear programming – NLP) s'occupe principalement des problèmes d'optimisation dont les données, i.e., les fonctions et ensembles définissant ces problèmes, sont non linéaires, mais sont aussi différentiables autant de fois que nécessaire pour l'établissement des outils théoriques, comme les conditions d'optimalité, ou pour la bonne marche des algorithmes de résolution qui y sont introduits et analysés.
Closed-loop controllerA closed-loop controller or feedback controller is a control loop which incorporates feedback, in contrast to an open-loop controller or non-feedback controller. A closed-loop controller uses feedback to control states or outputs of a dynamical system. Its name comes from the information path in the system: process inputs (e.g., voltage applied to an electric motor) have an effect on the process outputs (e.g., speed or torque of the motor), which is measured with sensors and processed by the controller; the result (the control signal) is "fed back" as input to the process, closing the loop.
Régulateur PIDLe régulateur PID, appelé aussi correcteur PID (proportionnel, intégral, dérivé) est un système de contrôle permettant d’améliorer les performances d'un asservissement, c'est-à-dire un système ou procédé en boucle fermée. C’est le régulateur le plus utilisé dans l’industrie où ses qualités de correction s'appliquent à de multiples grandeurs physiques. Le premier régulateur proportionnel à avoir été utilisé est probablement le régulateur à boules qui utilise des masses tournantes pour réguler une vitesse de rotation.
Relaxation continueEn informatique théorique et en recherche opérationnelle, la relaxation continue est une méthode qui consiste à interpréter de façon continue un problème combinatoire ou discret. Cette méthode est utilisée afin d'obtenir des informations sur le problème discret initial et parfois même pour obtenir sa solution. Les problèmes discrets ou combinatoires sont en effet très difficiles à traiter en raison de l'explosion combinatoire et il est courant de les traiter par une méthode de séparation et évaluation (branch and bound en anglais) : la relaxation continue fait partie des algorithmes d'évaluation nécessaire à la mise en œuvre de cette méthode.
Stockage d'énergie de réseauvignette|Réseau électrique simplifié avec stockage d'énergie. vignette|Flux d'énergie simplifié du réseau avec et sans stockage d'énergie, idéalisé pour le cours d'une journée Le stockage d'énergie de réseau (également appelé stockage d'énergie à grande échelle) est un ensemble de méthodes utilisées pour le stockage d'énergie à grande échelle au sein d'un réseau électrique.