Large numbersLarge numbers are numbers significantly larger than those typically used in everyday life (for instance in simple counting or in monetary transactions), appearing frequently in fields such as mathematics, cosmology, cryptography, and statistical mechanics. They are typically large positive integers, or more generally, large positive real numbers, but may also be other numbers in other contexts. Googology is the study of nomenclature and properties of large numbers.
Volume englobantDans les domaines de la synthèse d'image et de la géométrie algorithmique, un volume englobant pour un ensemble d'objets est un volume fermé qui contient entièrement l'union de l'ensemble des objets. Les volumes englobants sont utilisés pour améliorer l'efficacité des opérations géométriques en utilisant des volumes simples, qui contiennent des objets beaucoup plus complexes. Normalement, plus un volume est simple plus le test de chevauchement est simple. Les volumes englobants sont le plus souvent utilisés pour accélérer certains types de tests.
Évaluation paresseuseL’évaluation paresseuse (), appelée aussi appel par nécessité ou évaluation retardée est une technique d'implémentation des programmes récursifs pour laquelle l'évaluation d'un paramètre de fonction ne se fait pas avant que les résultats de cette évaluation ne soient réellement nécessaires. Ces résultats, une fois calculés, sont préservés pour des réutilisations ultérieures. Dans un langage comme Haskell, l'évaluation est paresseuse par défaut.
Système dynamiqueEn mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
Loi des grands nombresvignette|Visualisation de la loi des grands nombres En mathématiques, la loi des grands nombres permet d’interpréter la probabilité comme une fréquence de réalisation, justifiant ainsi le principe des sondages, et présente l’espérance comme une moyenne. Plus formellement, elle signifie que la moyenne empirique, calculée sur les valeurs d’un échantillon, converge vers l’espérance lorsque la taille de l’échantillon tend vers l’infini. Plusieurs théorèmes expriment cette loi, pour différents types de convergence en théorie des probabilités.
Minimum bounding boxIn geometry, the minimum or smallest bounding or enclosing box for a point set S in N dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie. When other kinds of measure are used, the minimum box is usually called accordingly, e.g., "minimum-perimeter bounding box". The minimum bounding box of a point set is the same as the minimum bounding box of its convex hull, a fact which may be used heuristically to speed up computation.
Stratégie d'évaluation (informatique)Un langage de programmation utilise une stratégie d'évaluation pour déterminer « quand » évaluer les arguments à l'appel d'une fonction (ou encore, opération, méthode) et « comment » passer les arguments à la fonction. Par exemple, dans l'appel par valeur, les arguments doivent être évalués avant d'être passés à la fonction. La stratégie d'évaluation d'un langage de programmation est spécifiée par la définition du langage même. En pratique, la plupart des langages de programmation (Java, C...
Bounding volume hierarchyA bounding volume hierarchy (BVH) is a tree structure on a set of geometric objects. All geometric objects, which form the leaf nodes of the tree, are wrapped in bounding volumes. These nodes are then grouped as small sets and enclosed within larger bounding volumes. These, in turn, are also grouped and enclosed within other larger bounding volumes in a recursive fashion, eventually resulting in a tree structure with a single bounding volume at the top of the tree.
Espérance mathématiqueEn théorie des probabilités, l'espérance mathématique d'une variable aléatoire réelle est, intuitivement, la valeur que l'on s'attend à trouver, en moyenne, si l'on répète un grand nombre de fois la même expérience aléatoire. Elle se note et se lit . Elle correspond à une moyenne pondérée des valeurs que peut prendre cette variable. Dans le cas où celle-ci prend un nombre fini de valeurs, il s'agit d'une moyenne pondérée par les probabilités d'apparition de chaque valeur.
Commande optimaleLa théorie de la commande optimale permet de déterminer la commande d'un système qui minimise (ou maximise) un critère de performance, éventuellement sous des contraintes pouvant porter sur la commande ou sur l'état du système. Cette théorie est une généralisation du calcul des variations. Elle comporte deux volets : le principe du maximum (ou du minimum, suivant la manière dont on définit l'hamiltonien) dû à Lev Pontriaguine et à ses collaborateurs de l'institut de mathématiques Steklov , et l'équation de Hamilton-Jacobi-Bellman, généralisation de l'équation de Hamilton-Jacobi, et conséquence directe de la programmation dynamique initiée aux États-Unis par Richard Bellman.