Méthode de JacobiLa méthode de Jacobi, due au mathématicien allemand Karl Jacobi, est une méthode itérative de résolution d'un système matriciel de la forme Ax = b. Pour cela, on utilise une suite x qui converge vers un point fixe x, solution du système d'équations linéaires. On cherche à construire, pour x donné, la suite x = F(x) avec . où est une matrice inversible. où F est une fonction affine. La matrice B = MN est alors appelée matrice de Jacobi.
Exigence (ingénierie)Une est, dans le domaine de l'ingénierie, un besoin, une nécessité, une attente auquel un produit ou un service doit répondre ou une contrainte qu'il doit satisfaire. L'exigence peut être exprimée par une partie prenante (utilisateur, client, commercial, analyste de marchés, gestionnaire de produits, etc.) ou déterminée par les processus d'ingénierie et en particulier les activités d'études. L'approche commune à tous les domaines d'ingénierie est de définir les besoins, d'envisager des solutions, et de livrer la solution la plus appropriée.
Système d'exploitation distribuéUn système d'exploitation distribué est une couche logicielle au dessus d'un ensemble de nœuds de calculs indépendants, communiquant par un système de réseau propre ou général. Chaque nœud comprend dans ce type de système d'exploitation un sous ensemble de l’agrégat global. Chaque nœud comporte son propre noyau servant à contrôler le matériel et les couches basses des communications en réseau. Des logiciels de plus haut niveau sont chargés de coordonner les activités collaboratives de l'ensemble de la grappe et des éléments de chacun de ces nœuds.
Software requirements specificationA software requirements specification (SRS) is a description of a software system to be developed. It is modeled after the business requirements specification (CONOPS). The software requirements specification lays out functional and non-functional requirements, and it may include a set of use cases that describe user interactions that the software must provide to the user for perfect interaction.
Application linéaireEn mathématiques, une application linéaire (aussi appelée opérateur linéaire ou transformation linéaire) est une application entre deux espaces vectoriels qui respecte l'addition des vecteurs et la multiplication scalaire, et préserve ainsi plus généralement les combinaisons linéaires. L’expression peut s’utiliser aussi pour un morphisme entre deux modules sur un anneau, avec une présentation semblable en dehors des notions de base et de dimension. Cette notion étend celle de fonction linéaire en analyse réelle à des espaces vectoriels plus généraux.
Gestion des exigencesLa gestion des exigences consiste à gérer les exigences hiérarchisées d'un projet, à détecter les incohérences entre elles et à assurer leur traçabilité. Dans de nombreux métiers, l'expression de ces exigences donne lieu à une quantité de documents dont la cohérence et la qualité conditionnent le succès ou l'échec des projets concernés. Il existe des logiciels spécialisés qui permettent d'aider à la réalisation de cette activité.
Méthode de GalerkineEn mathématiques, dans le domaine de l'analyse numérique, les méthodes de Galerkine sont une classe de méthodes permettant de transformer un problème continu (par exemple une équation différentielle) en un problème discret. Cette approche est attribuée aux ingénieurs russes Ivan Boubnov (1911) et Boris Galerkine (1913). Cette méthode est couramment utilisée dans la méthode des éléments finis. On part de la formulation faible du problème. La solution appartient à un espace fonctionnel satisfaisant des propriétés de régularité bien définies.
Discontinuous linear mapIn mathematics, linear maps form an important class of "simple" functions which preserve the algebraic structure of linear spaces and are often used as approximations to more general functions (see linear approximation). If the spaces involved are also topological spaces (that is, topological vector spaces), then it makes sense to ask whether all linear maps are continuous. It turns out that for maps defined on infinite-dimensional topological vector spaces (e.g.
Projecteur (mathématiques)En algèbre linéaire, un projecteur (ou une projection) est une application linéaire qu'on peut présenter de deux façons équivalentes : une projection linéaire associée à une décomposition de E comme somme de deux sous-espaces supplémentaires, c'est-à-dire qu'elle permet d'obtenir un des termes de la décomposition correspondante ; une application linéaire idempotente : elle vérifie p = p. Dans un espace hilbertien ou même seulement préhilbertien, une projection pour laquelle les deux supplémentaires sont orthogonaux est appelée projection orthogonale.
Quantification (signal)En traitement des signaux, la quantification est le procédé qui permet d'approcher un signal continu par les valeurs d'un ensemble discret d'assez petite taille. On parle aussi de quantification pour approcher un signal à valeurs dans un ensemble discret de grande taille par un ensemble plus restreint. L'application la plus courante de la quantification est la conversion analogique-numérique mais elle doit le développement de sa théorie aux problèmes de quantification pour la compression de signaux audio ou .