Art abstraitvignette| Eugène Carrière, Le Sommeil, lithographie (éditions A. Vollard, 1897). vignette|Vassily Kandinsky, sans titre (Étude pour composition VII, Première abstraction), 1913 (datée de « 1910 »), mine graphite, encre de Chine et aquarelle sur papier (), Musée national d'Art moderne (MNAM), Paris. thumb| Otto Freundlich, Composition, 1911, huile sur toile (), Musée d'art moderne de Paris. vignette|Arthur Dove, Nature Symbolized No.2, vers 1911, pastel sur papier sur isorel (), Art Institute of Chicago, lequel fut à Paris entre 1907 et 1909, exposant avec les fauves.
Hard edgeen désigne un mouvement artistique caractérisé par des œuvres peintes dans lesquelles les transitions sont brusques entre les zones de couleur. Les zones sont souvent d'une même couleur. Le style de peinture « Hard edge » est lié à l'abstraction géométrique, à l'Op Art, à l'abstraction post-picturale et à la Color Field painting. Le terme a été inventé en 1959 par Jules Langsner, écrivain, conservateur et critique d'art au Los Angeles Times, ainsi que par , pour décrire le travail de quelques peintres californiens.
Géométrie projectiveEn mathématiques, la géométrie projective est le domaine de la géométrie qui modélise les notions intuitives de perspective et d'horizon. Elle étudie les propriétés inchangées des figures par projection centrale. Le mathématicien et architecte Girard Desargues fonde la géométrie projective dans son Brouillon project d’une Atteinte aux evenemens des rencontres du cone avec un plan publié en 1639, où il l'utilise pour une théorie unifiée des coniques.
Géométrie synthétiqueLa géométrie synthétique ou géométrie pure est fondée sur une approche axiomatique (donc, « purement logique ») de la géométrie. Elle constitue une branche de la géométrie étudiant diverses propriétés et divers théorèmes uniquement par des méthodes d'intersections, de transformations et de constructions. Elle s'oppose à la géométrie analytique et refuse systématiquement l'utilisation des propriétés analytiques des figures ou l'appel aux coordonnées. Ses concepts principaux sont l'intersection, les transformations y compris par polaires réciproques, la logique.
Géométrie hyperboliqueEn mathématiques, la géométrie hyperbolique (nommée auparavant géométrie de Lobatchevski, lequel est le premier à en avoir publié une étude approfondie) est une géométrie non euclidienne vérifiant les quatre premiers postulats d’Euclide, mais pour laquelle le cinquième postulat, qui équivaut à affirmer que par un point extérieur à une droite passe une et une seule droite qui lui est parallèle, est remplacé par le postulat selon lequel « par un point extérieur à une droite passent plusieurs droites parallèle
Optique géométriqueL’optique géométrique est une branche de l'optique qui s'appuie notamment sur le modèle du rayon lumineux. Cette approche simple permet entre autres des constructions géométriques d’images, d’où son nom. Elle constitue l'outil le plus flexible et le plus efficace pour traiter les systèmes dioptriques et catadioptriques. Elle permet ainsi d'expliquer la formation des images. L'optique géométrique (la première théorie optique formulée) se trouve validée a posteriori par l'optique ondulatoire, en faisant l'approximation que tous les éléments utilisés sont de grande dimension devant la longueur d'onde de la lumière.
Polytope régulierdroite|vignette|Le dodécaèdre régulier, un des cinq solides platoniciens. En mathématiques, plus précisément en géométrie ou encore en géométrie euclidienne, un polytope régulier est une figure de géométrie présentant un grand nombre de symétries. En dimension deux, on trouve par exemple le triangle équilatéral, le carré, les pentagone et hexagone réguliers, etc. En dimension trois se rangent parmi les polytopes réguliers le cube, le dodécaèdre régulier (ci-contre), tous les solides platoniciens.
Radiosité (infographie)thumb|right|Scène avec des verres calculée par POV-Ray, utilisant la radiosité, les photons, la profondeur de champ, et d'autres effets. La radiosité, ou plus exactement la radiance, est une technique de calcul d'éclairage (ou illumination) d'une . Elle utilise les formules physiques de transfert radiatif de la lumière entre les différentes surfaces élémentaires composant la scène. L'illumination est dite globale car l'illumination de chaque surface élémentaire ne peut être calculée séparément des autres et le système modélisant l'ensemble des transferts ne peut être rendu que globalement.
TachismeLe tachisme est un style de peinture abstraite répandu en France dans les années 1950. Ce mouvement est souvent considéré comme l'équivalent européen de la tendance de l'expressionnisme abstrait américain représentée par l'action painting. Il désigne l'un des aspects de l'art informel, au sein de l'une de ses composantes dénommée abstraction lyrique. Le terme « tachisme » a d'abord été employé vers 1880 pour définir une variante du pointillisme. Il court alors les journaux avec tous les —ismes par lesquels se désignent les courants artistiques de l'époque.
Modèle statistiqueUn modèle statistique est une description mathématique approximative du mécanisme qui a généré les observations, que l'on suppose être un processus stochastique et non un processus déterministe. Il s’exprime généralement à l’aide d’une famille de distributions (ensemble de distributions) et d’hypothèses sur les variables aléatoires X1, . . ., Xn. Chaque membre de la famille est une approximation possible de F : l’inférence consiste donc à déterminer le membre qui s’accorde le mieux avec les données.