Variété abélienneEn mathématiques, et en particulier, en géométrie algébrique et géométrie complexe, une variété abélienne A est une variété algébrique projective qui est un groupe algébrique. La condition de est l'équivalent de la compacité pour les variétés différentielles ou analytiques, et donne une certaine rigidité à la structure. C'est un objet central en géométrie arithmétique. Une variété abélienne sur un corps k est un groupe algébrique A sur k, dont la variété algébrique sous-jacente est projective, connexe et géométriquement réduite.
Variété algébriqueUne variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques. Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés.
Variété rationnelleEn géométrie algébrique, une variété rationnelle est une variété algébrique (intègre) V sur un corps K qui est birationnelle à un espace projectif sur K, c'est-à-dire qu'un certain ouvert dense de V est isomorphe à un ouvert d'un espace projectif. De façon équivalente, cela signifie que son corps de fonctions est isomorphe au corps des fractions rationnelles à d indéterminées K(U, ... , U), l'entier d étant alors égal à la dimension de la variété. Soit V une variété algébrique affine de dimension d définie par un idéal premier ⟨f, .
Variété complèteEn mathématiques, en particulier en géométrie algébrique, une variété algébrique complète est une variété algébrique X, telle que pour toute variété Y le morphisme de projection est une application fermée (c'est-à-dire qu'elle envoie les fermés sur des fermés). Cela peut être vu comme un analogue de la compacité en géométrie algébrique : en effet, un espace topologique X est compact si et seulement si l'application de projection ci-dessus est fermée par rapport aux produits topologiques.
Quasi-projective varietyIn mathematics, a quasi-projective variety in algebraic geometry is a locally closed subset of a projective variety, i.e., the intersection inside some projective space of a Zariski-open and a Zariski-closed subset. A similar definition is used in scheme theory, where a quasi-projective scheme is a locally closed subscheme of some projective space. An affine space is a Zariski-open subset of a projective space, and since any closed affine subset can be expressed as an intersection of the projective completion and the affine space embedded in the projective space, this implies that any affine variety is quasiprojective.
SystèmeUn système est un ensemble d' interagissant entre eux selon certains principes ou règles. Par exemple une molécule, le système solaire, une ruche, une société humaine, un parti, une armée etc. Un système est déterminé par : sa frontière, c'est-à-dire le critère d'appartenance au système (déterminant si une entité appartient au système ou fait au contraire partie de son environnement) ; ses interactions avec son environnement ; ses fonctions (qui définissent le comportement des entités faisant partie du système, leur organisation et leurs interactions) ; Certains systèmes peuvent également avoir une mission (ses objectifs et sa raison d'être) ou des ressources, qui peuvent être de natures différentes (humaine, naturelle, matérielle, immatérielle.
Droits des ÉtatsDans la politique aux États-Unis, le terme « droits des États » (states' rights) fait référence à la souveraineté individuelle des gouvernements des États américains vis-à-vis de l'État fédéral. La répartition des pouvoirs est déterminée par la Constitution, reflétant notamment les pouvoirs énumérés du Congrès et le Dixième amendement. La question des droits des États fut l'un des principaux arguments négationnistes du mouvement néo-confédéré, qui a cherché à légitimer a posteriori la « Cause perdue » de la Confédération, en niant le fait que l'esclavage fut la cause principale de la guerre de Sécession.
Système thermodynamiqueEn thermodynamique classique, un système thermodynamique est une portion de l'Univers que l'on isole par la pensée du reste de l'Univers, ce dernier constituant alors le milieu extérieur. Le système thermodynamique n'est pas forcément défini par une frontière matérielle, ni nécessairement connexe. Les gouttes de liquide dans un brouillard, par exemple, définissent un système thermodynamique. Le milieu extérieur considéré est constitué par la portion d'Univers en interaction avec le système étudié.
Déclaration des droits (États-Unis)La Déclaration des droits (United States Bill of Rights) est l'ensemble constitué des dix premiers amendements à la Constitution américaine. Elle limite les pouvoirs du gouvernement fédéral et garantit les libertés de presse, de parole, de religion, de réunion, le droit de porter des armes, et le droit de propriété. Adoptée par la Chambre des représentants le et le Congrès le suivant, elle est ratifiée progressivement par les États fédérés, et prend effet le , date de la ratification par la Virginie.