Théorème de la base normaleEn mathématiques, le théorème de la base normale s'inscrit dans la théorie de Galois. Il garantit que si L / K est une extension finie galoisienne de corps commutatifs, de groupe de Galois G, alors il existe un élément x de L dont l'orbite Gx est une base du K-espace vectoriel L. Autrement dit : la représentation naturelle de G sur L est équivalente à la représentation régulière.
Definite quadratic formIn mathematics, a definite quadratic form is a quadratic form over some real vector space V that has the same sign (always positive or always negative) for every non-zero vector of V. According to that sign, the quadratic form is called positive-definite or negative-definite. A semidefinite (or semi-definite) quadratic form is defined in much the same way, except that "always positive" and "always negative" are replaced by "never negative" and "never positive", respectively.
Algèbre commutativevignette|Propriété universelle du produit tensoriel de deux anneaux commutatifs En algèbre générale, l’algèbre commutative est la branche des mathématiques qui étudie les anneaux commutatifs, leurs idéaux, les modules et les algèbres. Elle est fondamentale pour la géométrie algébrique et pour la théorie algébrique des nombres. David Hilbert est considéré comme le véritable fondateur de cette discipline appelée initialement la « théorie des idéaux ».
Vecteur de WittLes vecteurs de Witt sont des objets mathématiques, généralement décrits comme des suites infinies de nombres (ou plus généralement d'éléments d'un anneau). Ils ont été introduits par Ernst Witt en 1936, afin de décrire les extensions non ramifiées des corps de nombres p-adiques. Ces vecteurs sont dotés d'une structure d'anneau ; on parle donc de l’anneau des vecteurs de Witt. Ils apparaissent aujourd'hui dans plusieurs branches de la géométrie algébrique et arithmétique, en théorie des groupes et en physique théorique.
Théorie des corps de classes locauxEn mathématiques, la théorie des corps de classes locaux ou théorie du corps de classes local est l'étude en théorie des nombres des extensions abéliennes des corps locaux. Cette théorie peut être considérée comme achevée. Au début du , après les travaux de Teiji Takagi et Emil Artin qui complétèrent la théorie des corps de classes, les résultats locaux se déduisaient des résultats globaux. Actuellement, c'est le point de vue inverse qui est le plus répandu : les résultats locaux sont établis au préalable puis permettent de déduire les correspondances globales.
Citoyenneté mondialeLa citoyenneté mondiale est une citoyenneté non reconnue officiellement que s'attribuent les citoyens du monde, personnes qui estiment que les habitants de la Terre forment un peuple commun avec des droits et devoirs communs, en dehors des clivages nationaux, et qui placent l'intérêt de cet ensemble humain au-dessus d'intérêts locaux ou nationaux. Le concept général de citoyen du monde trouve son origine dans le stoïcisme, dont les philosophes sont les premiers à s'identifier comme citoyens du monde.
Quadratic fieldIn algebraic number theory, a quadratic field is an algebraic number field of degree two over , the rational numbers. Every such quadratic field is some where is a (uniquely defined) square-free integer different from and . If , the corresponding quadratic field is called a real quadratic field, and, if , it is called an imaginary quadratic field or a complex quadratic field, corresponding to whether or not it is a subfield of the field of the real numbers.
Ernst WittNOTOC Ernst Witt ( à Als - à Hambourg) est un mathématicien allemand. Son père étant missionnaire, il part en Chine pour ne revenir en Europe qu'en 1920. Il étudie à l'université de Fribourg-en-Brisgau. Il s'inscrit aux SA en 1933. En 1936 il obtient, encadré par Emmy Noether à l'université de Göttingen, son doctorat dont le sujet porte sur le théorème de Riemann-Roch. Il enseigne alors jusqu'en 1937 à l'université de Hambourg. Les travaux de Witt portent surtout sur l'algèbre et les formes quadratiques.
Décomposition primaireLa décomposition primaire est une généralisation de la décomposition d'un nombre entier en facteurs premiers. Cette dernière décomposition, connue depuis Gauss (1832) sous le nom de théorème fondamental de l'arithmétiqueGauss 1832., s'étend naturellement au cas d'un élément d'un anneau principal. Une décomposition plus générale est celle d'un idéal d'un anneau de Dedekind en produit d'idéaux premiers; elle a été obtenue en 1847 par Kummer (dans le formalisme encore peu maniable des « nombres idéaux ») à l'occasion de ses recherches sur le dernier théorème de FermatKummer 1847.
Groupe algébriqueEn géométrie algébrique, la notion de groupe algébrique est un équivalent des groupes de Lie en géométrie différentielle ou complexe. Un groupe algébrique est une variété algébrique munie d'une loi de groupe compatible avec sa structure de variété algébrique. Un groupe algébrique sur un corps (commutatif) K est une variété algébrique sur munie : d'un morphisme de K-variétés algébriques (appelé aussi multiplication) .