Limite de BekensteinEn physique, la limite de Bekenstein est une limite supérieure à l'entropie S, ou l'information I qui peut être contenue dans une région finie donnée de l'espace qui contient une quantité finie d'énergie ou, réciproquement, la quantité maximum d'information requise pour décrire parfaitement un système physique donné jusqu'au niveau quantique. Elle implique que l'information d'un système physique, ou l'information nécessaire pour décrire parfaitement ce système, doit être finie si cette région de l'espace et son énergie sont finies.
Horizon des événementsL'horizon des événements est, en relativité restreinte et en relativité générale, constitué par la limite éventuelle de la région qui peut être influencée dans le futur par un observateur situé en un endroit donné à une époque donnée. Dans le cas d'un trou noir, en particulier, on peut définir son horizon des événements comme une surface qui l'entoure, d'où aucun objet, ni même un rayon de lumière ne peut jamais échapper au champ gravitationnel du trou noir.
Spin connectionIn differential geometry and mathematical physics, a spin connection is a connection on a spinor bundle. It is induced, in a canonical manner, from the affine connection. It can also be regarded as the gauge field generated by local Lorentz transformations. In some canonical formulations of general relativity, a spin connection is defined on spatial slices and can also be regarded as the gauge field generated by local rotations.
Réseau de spinEn physique, un réseau de spin est un type de diagramme qui peut être utililisé pour représenter les états et interactions entre particules et champs en mécanique quantique. D'un point de vue mathématique, les diagrammes permettent de représenter de manière concise des fonctions multilinéaires et des fonctions entre représentations de groupe matriciel. La notation en diagramme simplifie souvent les calculs car de simples diagrammes permettent de représenter des fonctions compliquées.
Mur de feuvignette|Représentation d'un observateur qui tombe dans un trou noir (subissant une spaghettification). Le mur de feu est, en physique théorique, un phénomène hypothétique qui se produirait à l'horizon des événements d'un trou noir. Il est en effet prédit qu'il existe une zone de grande densité énergétique autour d'un trou noir, créée par le bris d'intrications quantiques généré par le rayonnement de Hawking.
InstantonEn mécanique quantique et en théorie quantique des champs, un instanton est une solution classique des équations du mouvement c'est-à-dire correspondant à un extremum local de l'action qui définit la théorie, mais pas à un minimum global. Puisque la théorie perturbative considère la plupart du temps un développement en puissance de la constante de couplage de la théorie au voisinage du minimum global de l'action, appelé l'état fondamental, les instantons sont inaccessibles à ce développement et constituent de ce point de vue des phénomènes non-perturbatifs.
ObservableUne observable est l'équivalent en mécanique quantique d'une grandeur physique en mécanique classique, comme la position, la quantité de mouvement, le spin, l'énergie, etc. Ce terme provient d'une expression utilisée par Werner Heisenberg dans ses travaux sur la mécanique des matrices, où il parlait de beobachtbare Grösse (quantité observable), et où il insistait sur la nécessité d'une définition opérationnelle d'une grandeur physique, qui prend mathématiquement la forme d'un opérateur.
Lagrangien (théorie des champs)La théorie lagrangienne des champs est un formalisme de la théorie classique des champs. C'est l'analogue de la théorie des champs de la mécanique lagrangienne. La mécanique lagrangienne est utilisée pour analyser le mouvement d'un système de particules discrètes chacune ayant un nombre fini de degrés de liberté. La théorie lagrangienne des champs s'applique aux continus et aux champs, qui ont un nombre infini de degrés de liberté.
Mécanique quantique dans l'espace des phasesLa formulation de la mécanique quantique dans l'espace des phases place les variables de position et d'impulsion sur un pied d'égalité dans l'espace des phases. En revanche, la représentation de Schrödinger utilise soit la représentation dans l'espace des positions, soit la représentation dans celui des impulsions (voir la page espace des positions et des impulsions).
Intégrale de cheminUne 'intégrale de chemin' (« path integral » en anglais) est une intégrale fonctionnelle, c'est-à-dire que l'intégrant est une fonctionnelle et que la somme est prise sur des fonctions, et non sur des nombres réels (ou complexes) comme pour les intégrales ordinaires. On a donc ici affaire à une intégrale en dimension infinie. Ainsi, on distinguera soigneusement l'intégrale de chemin (intégrale fonctionnelle) d'une intégrale ordinaire calculée sur un chemin de l'espace physique, que les mathématiciens appellent intégrale curviligne.