Gravitation quantique à bouclesLa gravitation quantique à boucles (loop quantum gravity en anglais) est une tentative de formuler une théorie de la gravitation quantique, et donc d'unifier la théorie de la relativité générale et les concepts de la physique quantique. Elle est fondée sur la quantification canonique directe de la relativité générale dans une formulation hamiltonienne (l'équation de Wheeler-DeWitt), les trois autres interactions fondamentales n'étant pas considérées dans un premier temps.
Trou noiralt=|vignette|Le disque d'accrétion du trou noir M87* imagé par l'en. Le trou noir lui-même est invisible, au centre de la zone noire centrale. En astrophysique, un trou noir est un objet céleste si compact que l'intensité de son champ gravitationnel empêche toute forme de matière ou de rayonnement de s'en échapper. De tels objets ne peuvent ni émettre, ni diffuser la lumière et sont donc noirs, ce qui en astronomie revient à dire qu'ils sont optiquement invisibles.
Paradoxe de l'informationEn astrophysique, le paradoxe de l'information est un paradoxe mis en évidence par Stephen Hawking en 1976 opposant les lois de la mécanique quantique à celles de la relativité générale. En effet, la relativité générale implique qu'une information pourrait fondamentalement disparaître dans un trou noir, à la suite de l'évaporation de celui-ci. Cette perte d'information implique une non-réversibilité (un même état peut être issu de plusieurs états différents), et une évolution non unitaire des états quantiques, en contradiction fondamentale avec les postulats de la mécanique quantique.
Thermodynamique des trous noirsLa thermodynamique des trous noirs est la branche de l'étude des trous noirs qui s'est développée à la suite de la découverte d'une analogie profonde entre certaines propriétés des trous noirs et les lois de la thermodynamique au début des années 1970. Cette analogie est ensuite devenue pertinente grâce à la découverte par Stephen Hawking du phénomène d'évaporation des trous noirs (1975), démontrant qu'un trou noir n'est pas un objet complètement sombre, mais émet un très faible rayonnement thermique.
Gravité quantiqueLa gravité quantique est une branche de la physique théorique tentant d'unifier la mécanique quantique et la relativité générale. Une telle théorie permettrait notamment de comprendre les phénomènes impliquant de grandes quantités de matière ou d'énergie sur de petites dimensions spatiales, tels que les trous noirs ou l'origine de l'Univers. L'approche générale utilisée pour obtenir une théorie de la gravité quantique est, présumant que la théorie sous-jacente doit être simple et élégante, d'examiner les symétries et indices permettant de combiner mécanique quantique et la relativité générale en une théorie globale unifiée.
Micro-trou noirLes micro-trous noirs sont de minuscules trous noirs hypothétiques, également appelés trous noirs quantiques ou mini-trous noirs, pour lesquels les effets liés à la mécanique quantique jouent un rôle important. Il est possible que de tels trous noirs quantiques aient été créés dans l'environnement très dense de l'univers primordial, ou au cours de transitions de phases ultérieures : on parle dans ce cas de trous noirs primordiaux. Ils pourraient être détectés prochainement par les astrophysiciens, grâce aux particules qu'ils devraient émettre par rayonnement de Hawking.
Principe holographiquevignette|Cette image est une reconstruction assez fidèle d'une image du collecteur de Calabi-Yau qui apparaît comme une figure dans l'article : Leonard Susskind (novembre 2003). "Superstrings (Features : November 2003)". Physics World 16 (11). En physique théorique, le principe holographique est une conjecture spéculative dans le cadre de la théorie de la gravité quantique, proposée par Gerard 't Hooft en 1993 puis améliorée par Leonard Susskind en 1995. Son nom métaphorique vient de l'analogie avec l'holographie.
Fonction thêtaEn mathématiques, on appelle fonctions thêta certaines fonctions spéciales d'une ou de plusieurs variables complexes. Elles apparaissent dans plusieurs domaines, comme l'étude des variétés abéliennes, des espaces de modules, et les formes quadratiques. Elles ont aussi des applications à la théorie des solitons. Leurs généralisations en algèbre extérieure apparaissent dans la théorie quantique des champs, plus précisément dans la théorie des cordes et des D-branes.
Théorie de jaugeEn physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Canonical quantum gravityIn physics, canonical quantum gravity is an attempt to quantize the canonical formulation of general relativity (or canonical gravity). It is a Hamiltonian formulation of Einstein's general theory of relativity. The basic theory was outlined by Bryce DeWitt in a seminal 1967 paper, and based on earlier work by Peter G. Bergmann using the so-called canonical quantization techniques for constrained Hamiltonian systems invented by Paul Dirac. Dirac's approach allows the quantization of systems that include gauge symmetries using Hamiltonian techniques in a fixed gauge choice.