Inégalité de ChernoffEn théorie des probabilités, l'inégalité de Chernoff permet de majorer la queue d'une loi de probabilité, c'est-à-dire qu'elle donne une valeur maximale de la probabilité qu'une variable aléatoire dépasse une valeur fixée. On parle également de borne de Chernoff. Elle est nommée ainsi en l'honneur du mathématicien Herman Chernoff. Elle est comparable à l'inégalité de Markov mais donne une borne exponentielle. Il existe de nombreux énoncés, et de nombreux cas particuliers.
Espérance mathématiqueEn théorie des probabilités, l'espérance mathématique d'une variable aléatoire réelle est, intuitivement, la valeur que l'on s'attend à trouver, en moyenne, si l'on répète un grand nombre de fois la même expérience aléatoire. Elle se note et se lit . Elle correspond à une moyenne pondérée des valeurs que peut prendre cette variable. Dans le cas où celle-ci prend un nombre fini de valeurs, il s'agit d'une moyenne pondérée par les probabilités d'apparition de chaque valeur.
Error correction codeIn computing, telecommunication, information theory, and coding theory, forward error correction (FEC) or channel coding is a technique used for controlling errors in data transmission over unreliable or noisy communication channels. The central idea is that the sender encodes the message in a redundant way, most often by using an error correction code or error correcting code (ECC). The redundancy allows the receiver not only to detect errors that may occur anywhere in the message, but often to correct a limited number of errors.
Fonction objectifvignette|comparaison de certains substituts de la fonction de perte Le terme fonction objectif ou fonction économique, est utilisé en optimisation mathématique et en recherche opérationnelle pour désigner une fonction qui sert de critère pour déterminer la meilleure solution à un problème d'optimisation. Elle associe une valeur à une instance d'un problème d'optimisation. Le but du problème d'optimisation est alors de minimiser ou de maximiser cette fonction jusqu'à l'optimum, par différents procédés comme l'algorithme du simplexe.
Code correcteurvignette|Pour nettoyer les erreurs de transmission introduites par l'atmosphère terrestre (à gauche), les scientifiques de Goddard ont appliqué la correction d'erreur Reed-Solomon (à droite), qui est couramment utilisée dans les CD et DVD. Les erreurs typiques incluent les pixels manquants (blanc) et les faux signaux (noir). La bande blanche indique une brève période pendant laquelle la transmission a été interrompue.
Majorant ou minorantEn mathématiques, soient (E , ≤) un ensemble ordonné et F une partie de E ; un élément x de E est : un majorant de F s'il est supérieur ou égal, par la relation binaire définie au préalable, à tous les éléments de F : ; un minorant de F s'il est inférieur ou égal, par la relation binaire définie au préalable, à tous les éléments de F :. Si F possède un majorant x alors on dit que F est une partie majorée. Si F possède un minorant x alors on dit que F est une partie minorée.
Théorie de l'utilité espéréeLa théorie de l'utilité espérée (aussi appelée théorie EU, de l'anglais « expected utility ») est une théorie de la décision en environnement risqué développée par John von Neumann et Oskar Morgenstern dans leur ouvrage Theory of Games and Economic Behavior (1944). Introduisons d'abord quelques notations: L'incertitude est décrite par un ensemble d'états du monde partitionné par la famille de parties (de taille ). Un élément de est appelé événement. Une variable aléatoire est une fonction qui associe à chaque un résultat noté .
Aversion pour la pertevignette|Graphique de la valeur perçue du gain et de la perte par rapport à la valeur numérique stricte du gain et de la perte : Une perte de 0,05 estperc\cuecommeuneperted′utiliteˊbeaucoupplusimportantequel′augmentationd′utiliteˊd′ungainde0,05. L'aversion pour la perte est une notion issue de l'économie comportementale, elle est un biais comportemental qui fait que les humains attachent plus d'importance à une perte qu'à un gain du même montant. Inégalité de Bienaymé-TchebychevEn théorie des probabilités, l'inégalité de Bienaymé-Tchebychev, est une inégalité de concentration permettant de montrer qu'une variable aléatoire prendra avec une faible probabilité une valeur relativement lointaine de son espérance. Ce résultat s'applique dans des cas très divers, nécessitant la connaissance de peu de propriétés (seules l'espérance et la variance doivent être connues), et permet de démontrer la loi faible des grands nombres.
Borne supérieure et borne inférieureEn mathématiques, les notions de borne supérieure et borne inférieure d'un ensemble de nombres réels interviennent en analyse, comme cas particulier de la définition générale suivante : la borne supérieure (ou le supremum) d'une partie d'un ensemble (partiellement) ordonné est le plus petit de ses majorants. Une telle borne n'existe pas toujours, mais si elle existe alors elle est unique. Elle n'appartient pas nécessairement à la partie considérée. Dualement, la borne inférieure (ou l'infimum) d'une partie est le plus grand de ses minorants.