Mesure extérieureLa notion de mesure extérieure (ou mesure extérieure au sens de Carathéodory) est un concept, dû au mathématicien Constantin Carathéodory, qui généralise dans un cadre axiomatique une construction utilisée par Henri Lebesgue pour définir la mesure de Lebesgue des parties Lebesgue-mesurables de la droite réelle. Soit un ensemble.
Mesure (mathématiques)En mathématiques, une mesure positive (ou simplement mesure quand il n'y a pas de risque de confusion) est une fonction qui associe une grandeur numérique à certains sous-ensembles d'un ensemble donné. Il s'agit d'un important concept en analyse et en théorie des probabilités. Intuitivement, la mesure d'un ensemble ou sous-ensemble est similaire à la notion de taille, ou de cardinal pour les ensembles discrets. Dans ce sens, la mesure est une généralisation des concepts de longueur, aire ou volume dans des espaces de dimension 1, 2 ou 3 respectivement.
Mesure de LebesgueLa mesure de Lebesgue est une mesure qui étend le concept intuitif de volume à une très large classe de parties de l'espace. Comme l'a immédiatement perçu son inventeur, Henri Lebesgue, elle permet de bâtir une théorie de l'intégration très performante et fondamentale en analyse moderne : la théorie de l'intégrale de Lebesgue. Plusieurs constructions bien différentes de la mesure de Lebesgue sont connues. Chacune d'entre elles peut naturellement être prise pour définition ; dans le cadre d'un article où il faut toutes les évoquer, il est prudent de fournir en ouverture une définition plus unificatrice.
Modèle linéairevignette|Données aléatoires sous forme de points, et leur régression linéaire. Un modèle linéaire multivarié est un modèle statistique dans lequel on cherche à exprimer une variable aléatoire à expliquer en fonction de variables explicatives X sous forme d'un opérateur linéaire. Le modèle linéaire est donné selon la formule : où Y est une matrice d'observations multivariées, X est une matrice de variables explicatives, B est une matrice de paramètres inconnus à estimer et U est une matrice contenant des erreurs ou du bruit.
Halftoningvignette|À gauche : points de demi-teintes. À droite : exemple de la façon dont l'œil humain verrait les points à une distance suffisante. La demi-teinte, similigravure, également connue sous l'anglicisme halftone, en reprographie, est une technique utilisée en imprimerie qui permet de rendre plusieurs niveaux de gris d'une couleur à partir d'une impression monochrome. Les imprimantes ne peuvent imprimer que des points d'encre ; elles les arrangent de telle sorte que l'œil humain ne discerne plus ces points mais les intègre pour donner une illusion de plusieurs niveaux de gris.
Convergence de mesuresEn mathématiques, plus spécifiquement en théorie des mesures, il existe différentes notions de convergence de mesures . Pour un sens général intuitif de ce que l'on entend par convergence en mesure, considérons une suite de mesures sur un espace, partageant une collection commune d'ensembles mesurables. Une telle suite pourrait représenter une tentative de construire des approximations «de mieux en mieux» d'une mesure souhaitée qui est difficile à obtenir directement.
Pixelthumb|upright=1.4|Image numérique dont une portion est très agrandie. Les pixels apparaissent ici comme des petits carrés. Le pixel, souvent abrégé p ou px, est l'unité de base de la définition d'une matricielle. Ce mot provient de la locution anglaise picture element, qui signifie « élément d'image ». Le pixel est l'unité minimale adressable par le contrôleur vidéo. C'est aussi l'unité utilisée pour spécifier les définitions d'affichage (largeur × hauteur).
Least-squares spectral analysisLeast-squares spectral analysis (LSSA) is a method of estimating a frequency spectrum based on a least-squares fit of sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science, generally boosts long-periodic noise in the long and gapped records; LSSA mitigates such problems. Unlike in Fourier analysis, data need not be equally spaced to use LSSA.
Modèle statistiqueUn modèle statistique est une description mathématique approximative du mécanisme qui a généré les observations, que l'on suppose être un processus stochastique et non un processus déterministe. Il s’exprime généralement à l’aide d’une famille de distributions (ensemble de distributions) et d’hypothèses sur les variables aléatoires X1, . . ., Xn. Chaque membre de la famille est une approximation possible de F : l’inférence consiste donc à déterminer le membre qui s’accorde le mieux avec les données.
Bruits colorésBien que le bruit soit un signal aléatoire, il possède des propriétés statiques caractéristiques. La densité spectrale de puissance en est une, et peut être utilisée pour distinguer les différents types de bruit. Cette classification par la densité spectrale donne une terminologie de « couleurs ». Chaque type est défini par une couleur. Ces définitions sont, en principe, communes aux différentes disciplines pour lesquelles le bruit est un facteur important (comme l'acoustique, la musique, l'électrotechnique et la physique).