Équilibre thermodynamiquevignette|200px|Exemple d'équilibre thermodynamique de deux systèmes, en l'occurrence deux phases : l'équilibre liquide-vapeur du brome. En thermodynamique, un équilibre thermodynamique correspond à l'état d'un système ne subissant aucune évolution à l'échelle macroscopique. Les grandeurs intensives caractérisant ce système (notamment la pression, la température et les potentiels chimiques) sont alors homogènes dans l'espace et constantes dans le temps.
Équilibre économiqueEn économie, le concept d'équilibre économique sur un ou plusieurs marchés désigne un vecteur de variables, généralement des prix qui égalisent l'offre et la demande sur l'ensemble des marchés considérés. Cette désignation d'ensemble recouvre en fait des concepts d'équilibre très différents, qui présentent des propriétés différentes et appartiennent à des cadres d'analyse parfois éloignés. L'équilibre économique n'est jamais l'équilibre comptable. L'équilibre partiel constitue le concept d'équilibre économique le plus fréquent dans la recherche économique.
Période du tableau périodiqueDans le tableau périodique des éléments, une période est une ligne de la table. Les éléments chimiques d'une même période ont le même nombre de couches électroniques. Sept périodes contiennent les éléments observés à ce jour, et une huitième période hypothétique a été décrite. L'organisation du tableau en lignes nommées périodes et colonnes nommées groupes reflète la périodicité des propriétés physico-chimiques des éléments lorsque le nombre atomique augmente.
Équilibre généralL'équilibre général est un concept d'économie qui désigne la possibilité pour les marchés d'atteindre l'équilibre simultanément par le libre jeu de l'offre et de la demande. L'équilibre général se distingue de l'équilibre simple (ou partiel) en ce qu'il s'agit d'un équilibre atteint sur l'intégralité des marchés. Issu de la microéconomie, la théorie de l'équilibre général a été développée par Léon Walras dans son ouvrage de , Éléments d'économie politique pure.
Équilibre de Nashvignette|Le dilemme du prisonnier : chacun des deux joueurs dispose de deux stratégies : D pour dénoncer, C pour ne pas dénoncer. La matrice présente le gain des joueurs. Si les deux joueurs choisissent D (se dénoncent), aucun ne regrette son choix, car s'il avait choisi C, alors que l'autre a opté pour D, sa « tristesse » aurait augmenté. C'est un équilibre de Nash — il y a « non-regret » de son choix par chacun, au vu du choix de l'autre.
Period-doubling bifurcationIn dynamical systems theory, a period-doubling bifurcation occurs when a slight change in a system's parameters causes a new periodic trajectory to emerge from an existing periodic trajectory—the new one having double the period of the original. With the doubled period, it takes twice as long (or, in a discrete dynamical system, twice as many iterations) for the numerical values visited by the system to repeat themselves. A period-halving bifurcation occurs when a system switches to a new behavior with half the period of the original system.
Stabilité de LiapounovEn mathématiques et en automatique, la notion de stabilité de Liapounov (ou, plus correctement, de stabilité au sens de Liapounov) apparaît dans l'étude des systèmes dynamiques. De manière générale, la notion de stabilité joue également un rôle en mécanique, dans les modèles économiques, les algorithmes numériques, la mécanique quantique, la physique nucléaire Un exemple typique de système stable au sens de Liapounov est celui constitué d'une bille roulant sans frottement au fond d'une coupelle ayant la forme d'une demi-sphère creuse : après avoir été écartée de sa position d'équilibre (qui est le fond de la coupelle), la bille oscille autour de cette position, sans s'éloigner davantage : la composante tangentielle de la force de gravité ramène constamment la bille vers sa position d'équilibre.
Point fixeEn mathématiques, pour une application f d'un ensemble E dans lui-même, un élément x de E est un point fixe de f si f(x) = x. Exemples : dans le plan, la symétrie par rapport à un point A admet un unique point fixe : A ; l'application inverse (définie sur l'ensemble des réels non nuls) admet deux points fixes : –1 et 1, solutions de l'équation équivalente à l'équation . Graphiquement, les points fixes d'une fonction f (d'une variable réelle, à valeurs réelles) sont les points d'intersection de la droite d'équation y = x avec la courbe d'équation y = f(x).
Fixed-point iterationIn numerical analysis, fixed-point iteration is a method of computing fixed points of a function. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is which gives rise to the sequence of iterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of , i.e., More generally, the function can be defined on any metric space with values in that same space.
History of the periodic tableThe periodic table is an arrangement of the chemical elements, structured by their atomic number, electron configuration and recurring chemical properties. In the basic form, elements are presented in order of increasing atomic number, in the reading sequence. Then, rows and columns are created by starting new rows and inserting blank cells, so that rows (periods) and columns (groups) show elements with recurring properties (called periodicity). For example, all elements in group (column) 18 are noble gases that are largely—though not completely—unreactive.