Équilibre chimiqueUn équilibre chimique est le résultat de deux réactions chimiques simultanées dont les effets s'annulent mutuellement. Une réaction telle que la combustion du propane avec l'oxygène, qui s'arrête lorsque l'un des réactifs est totalement épuisé, est qualifiée de réaction totale, complète ou irréversible. À contrario, une réaction comme l'estérification, aboutissant à un mélange stable dans le temps de réactifs et de produits, sans disparition totale de l'une des espèces chimiques, est qualifiée de réaction partielle, incomplète, réversible ou inversible : ce type de réaction aboutit à un équilibre chimique.
Fonction de LiapounovUne fonction de Liapounov est une fonction qui permet d'estimer la stabilité d'un point d'équilibre (ou, plus généralement, d'un mouvement, c'est-à-dire d'une solution maximale) d'une équation différentielle. Soit une fonction et un système dynamique, avec un point d'équilibre de ce système, c'est-à-dire que . Par un changement de variable , on peut se ramener au cas où l'origine est un point d'équilibre (). Une fonction est une fonction candidate de Liapounov si pour un certain voisinage de l'origine.
Modèle de KuramotoLe modèle de Kuramoto, proposé pour la première fois par Yoshiki Kuramoto (蔵本 由紀 Kuramoto Yoshiki), est un modèle mathématique utilisé pour décrire la synchronisation au sein des systèmes complexes. Plus précisément, il s'agit d'un modèle pour le comportement d'un grand nombre d'oscillateurs couplés. Sa formulation a été motivée par le comportement des oscillateurs dans les systèmes chimiques et biologiques, et il a trouvé de nombreuses applications dans les neurosciences ou les oscillations dynamiques de la propagation d'une flamme par exemple.
Théorie des bifurcationsLa théorie des bifurcations, en mathématiques et en physique est l'étude de certains aspects des systèmes dynamiques. Une bifurcation intervient lorsqu'un petit changement d'un paramètre physique produit un changement majeur dans l'organisation du système. Des exemples classiques d'une bifurcation en sciences pures sont par exemple les rythmes circadiens de populations animales en biologie théorique et les solutions de météo en mathématique et physique non linéaire, en sciences de l'ingénieur il y a aussi le flambage d'une poutre élastique (l'expérience peut être faite avec une règle d'écolier) ou les transitions de phase de matériaux (température critique de bifurcation, concentration critique).
Liste de théorèmes du point fixeEn analyse, un théorème du point fixe donne des conditions suffisantes d’existence d’un point fixe pour une fonction ou une famille de fonctions. Plus précisément, étant donné un ensemble E et une famille de fonctions f définies sur E et à valeurs dans E, ces théorèmes permettent de justifier qu’il existe un élément x de E tel que pour toutes les fonctions considérées on ait . Certains de ces théorèmes fournissent même un processus itératif permettant d’approcher un tel point fixe.
Fonction périodiqueEn mathématiques, une fonction périodique est une fonction qui lorsqu'elle est appliquée à une variable, reprend la même valeur si on ajoute à cette variable une certaine quantité fixe appelée période. Des exemples de telles fonctions peuvent être obtenus à partir de phénomènes périodiques, comme l'heure indiquée par la petite aiguille d'une horloge, les phases de la lune, etc. thumb|La fonction sinus est périodique de période 2π.
Théorie du chaosLa théorie du chaos est une théorie scientifique rattachée aux mathématiques et à la physique qui étudie le comportement des systèmes dynamiques sensibles aux conditions initiales, un phénomène généralement illustré par l'effet papillon. Dans de nombreux systèmes dynamiques, des modifications infimes des conditions initiales entraînent des évolutions rapidement divergentes, rendant toute prédiction impossible à long terme.
Oscillateur harmoniqueUn oscillateur harmonique est un oscillateur idéal dont l'évolution au cours du temps est décrite par une fonction sinusoïdale, dont la fréquence ne dépend que des caractéristiques du système et dont l'amplitude est constante. Ce modèle mathématique décrit l'évolution de n'importe quel système physique au voisinage d'une position d'équilibre stable, ce qui en fait un outil transversal utilisé dans de nombreux domaines : mécanique, électricité et électronique, optique. Il néglige les forces dissipatives (frottement par exemple).
Tableau périodique étenduredresse=1.5|vignette|Tableau périodique étendu proposé par P. Pyykkö. Un tableau périodique étendu est un tableau périodique comportant des éléments chimiques au-delà de la , éléments hypothétiques de numéro atomique supérieur à 118 (correspondant à l'oganesson) classés en fonction de leurs configurations électroniques calculées. Le premier tableau périodique étendu a été théorisé par Glenn Seaborg en 1969 : il prévoyait une contenant du bloc g et une nouvelle famille d'éléments chimiques dite des « superactinides ».
Théorème du point fixe de Kakutanivignette|Exemple animé montrant des points x, et leurs images φ(x) par la fonction φ. L'animation finit par montrer un point x contenu dans φ(x). En analyse mathématique, le théorème du point fixe de Kakutani est un théorème de point fixe qui généralise celui de Brouwer à des fonctions à valeurs ensemblistes. Il fournit une condition suffisante pour qu'une telle fonction, définie sur un compact convexe d'un espace euclidien, possède un point fixe, c'est-à-dire dans ce contexte : un point qui appartient à son par cette fonction.