Équations d'EulerEn mécanique des fluides, les équations d'Euler sont des équations aux dérivées partielles non linéaires qui décrivent l'écoulement des fluides (liquide ou gaz) dans l’approximation des milieux continus. Ces écoulements sont adiabatiques, sans échange de quantité de mouvement par viscosité ni d'énergie par conduction thermique. L'histoire de ces équations remonte à Leonhard Euler qui les a établies pour des écoulements incompressibles (1757).
État plasmathumb|upright|Le soleil est une boule de plasma. thumb|Lampe à plasma.|168x168px thumb|upright|Les flammes de haute température sont des plasmas. L'état plasma est un état de la matière, tout comme l'état solide, l'état liquide ou l'état gazeux, bien qu'il n'y ait pas de transition brusque pour passer d'un de ces états au plasma ou réciproquement. Il est visible sur Terre, à l'état naturel, le plus souvent à des températures élevées favorables aux ionisations, signifiant l’arrachement d'électrons aux atomes.
Dynamique des fluidesLa dynamique des fluides (hydrodynamique ou aérodynamique), est l'étude des mouvements des fluides, qu'ils soient liquides ou gazeux. Elle fait partie de la mécanique des fluides avec l'hydrostatique (statique des fluides). La résolution d'un problème de dynamique des fluides demande de calculer diverses propriétés des fluides comme la vitesse, la viscosité, la densité, la pression et la température en tant que fonctions de l'espace et du temps.
Turbulencevignette|Léonard de Vinci s'est notamment passionné pour l'étude de la turbulence. La turbulence désigne l'état de l'écoulement d'un fluide, liquide ou gaz, dans lequel la vitesse présente en tout point un caractère tourbillonnaire : tourbillons dont la taille, la localisation et l'orientation varient constamment. Les écoulements turbulents se caractérisent donc par une apparence très désordonnée, un comportement difficilement prévisible et l'existence de nombreuses échelles spatiales et temporelles.
Champ magnétiqueEn physique, dans le domaine de l'électromagnétisme, le champ magnétique est une grandeur ayant le caractère d'un champ vectoriel, c'est-à-dire caractérisée par la donnée d'une norme, d’une direction et d’un sens, définie en tout point de l'espace et permettant de modéliser et quantifier les effets magnétiques du courant électrique ou des matériaux magnétiques comme les aimants permanents.
Phénomène de transfertUn phénomène de transfert (ou phénomène de transport) est un phénomène irréversible durant lequel une grandeur physique est transportée par le biais de molécules. C'est un phénomène transversal présent dans tous les domaines de la science et en ingénierie. Tous les phénomènes de transport ont pour origine l'inhomogénéité d'une grandeur intensive. C'est la tendance spontanée des systèmes physiques et chimiques à rendre uniformes ces grandeurs qui provoquent le transport.
Plasma quarks-gluonsLe plasma de quarks et de gluons, ou QGP (pour Quark-Gluon Plasma) est un état de la matière qui existe à des températures et/ou des densités extrêmement élevées. Cet état consiste en une « soupe » de quarks et de gluons (presque) libres. Elle diffère en cela des autres états de la matière, comme les solides, les liquides ou les gaz, dans lesquels les quarks et les gluons sont confinés dans les hadrons. Le était sans doute présent dans l'univers durant les microsecondes après le Big Bang.
Onde de StokesLes ondes de Stokes sont des ondes de gravité rencontrées sur la surface de la mer, des vagues. Elles ont des solutions des équations d'Euler pour un fluide incompressible irrotationnel à surface libre soumis à un champ de gravité qui ont été obtenues par George Gabriel Stokes par la théorie des perturbations en 1847 dans le cas d'un milieu de profondeur infinie. Pour un écoulement incompressible irrotationnel la vitesse dérive d'un potentiel ψ, les équations d'incompressibilité et de quantité de mouvement s'écrivent où ρ est la masse volumique, p la pression, g la gravité et z l'altitude.
Airy wave theoryIn fluid dynamics, Airy wave theory (often referred to as linear wave theory) gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.
Mécanique des fluidesLa mécanique des fluides est un domaine de la physique consacré à l’étude du comportement des fluides (liquides, gaz et plasmas) et des forces internes associées. C’est une branche de la mécanique des milieux continus qui modélise la matière à l’aide de particules assez petites pour relever de l’analyse mathématique, mais assez grandes par rapport aux molécules pour être décrites par des fonctions continues. Elle comprend deux sous-domaines : la statique des fluides, qui est l’étude des fluides au repos, et la dynamique des fluides, qui est l’étude des fluides en mouvement.