Bruit roseLe bruit rose est un signal aléatoire dont la densité spectrale est constante par bande d'octave. Sa densité spectrale de puissance est inversement proportionnelle à la fréquence du signal. Tandis que le bruit blanc a une énergie spectrale constante sur l'intégralité de l'échelle des fréquences, soit par hertz, le bruit rose possède lui une énergie constante par bande d'octave. Par exemple, avec le bruit rose, la bande d'octave s'étalant de 500 à 1000 hertz contient la même énergie que celle s'étalant de 4000 à 8000 hertz.
Réglementation sur les nuisances sonoresLa réglémentation sur les nuisances sonores comprend des lois ou directives liées à l'émission de bruit, établies par des niveaux de gouvernements nationaux, d'états ou provinciaux et municipaux. Après le grand tournant de l'acte américain de contrôle des nuisances sonores, d'autres gouvernements locaux et d'état établissent d'autres règles. Une réglementation des nuisances sonores restreint la quantité de bruit, la durée du bruit et la source du bruit. Les restrictions sont généralement valables à certaines heures de la journée.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Quantification (signal)En traitement des signaux, la quantification est le procédé qui permet d'approcher un signal continu par les valeurs d'un ensemble discret d'assez petite taille. On parle aussi de quantification pour approcher un signal à valeurs dans un ensemble discret de grande taille par un ensemble plus restreint. L'application la plus courante de la quantification est la conversion analogique-numérique mais elle doit le développement de sa théorie aux problèmes de quantification pour la compression de signaux audio ou .
Méthodes de quadrature de GaussDans le domaine mathématique de l'analyse numérique, les méthodes de quadrature sont des approximations de la valeur numérique d'une intégrale. En général, on remplace le calcul de l'intégrale par une somme pondérée prise en un certain nombre de points du domaine d'intégration (voir calcul numérique d'une intégrale pour plus d'informations). La méthode de quadrature de Gauss, du nom de Carl Friedrich Gauss, est une méthode de quadrature exacte pour un polynôme de degré 2n – 1 avec n points pris sur le domaine d'intégration.
Méthode des différences finiesEn analyse numérique, la méthode des différences finies est une technique courante de recherche de solutions approchées d'équations aux dérivées partielles qui consiste à résoudre un système de relations (schéma numérique) liant les valeurs des fonctions inconnues en certains points suffisamment proches les uns des autres. Cette méthode apparaît comme étant la plus simple à mettre en œuvre car elle procède en deux étapes : d'une part la discrétisation par différences finies des opérateurs de dérivation/différentiation, d'autre part la convergence du schéma numérique ainsi obtenu lorsque la distance entre les points diminue.
Bruit additif blanc gaussienLe bruit additif blanc gaussien est un modèle élémentaire de bruit utilisé en théorie de l'information pour imiter de nombreux processus aléatoires qui se produisent dans la nature. Les adjectifs indiquent qu'il est : additif il s'ajoute au bruit intrinsèque du système d'information ; blanc sa puissance est uniforme sur toute la largeur de bande de fréquences du système, par opposition avec un bruit coloré qui privilégie une bande de fréquences par analogie avec une lumière colorée dans le spectre visible ; gaussien il a une distribution normale dans le domaine temporel avec une moyenne nulle (voir bruit gaussien).
Polynôme de TchebychevEn mathématiques, un polynôme de Tchebychev est un terme de l'une des deux suites de polynômes orthogonaux particulières reliées à la formule de Moivre. Les polynômes de Tchebychev sont nommés ainsi en l'honneur du mathématicien russe Pafnouti Lvovitch Tchebychev. Il existe deux suites de polynômes de Tchebychev, l'une nommée polynômes de Tchebychev de première espèce et notée T et l'autre nommée polynômes de Tchebychev de seconde espèce et notée U (dans les deux cas, l'entier naturel n correspond au degré).
Environmental noiseEnvironmental noise is an accumulation of noise pollution that occurs outside. This noise can be caused by transport, industrial, and recreational activities. Noise is frequently described as 'unwanted sound'. Within this context, environmental noise is generally present in some form in all areas of human, animal, or environmental activity. The effects in humans of exposure to environmental noise may vary from emotional to physiological and psychological. Noise at low levels is not necessarily harmful.
Perte d'audition due au bruitLa perte auditive due au bruit (NIHL- Noise Induced Hearing Loss) est la perte irrémédiable d'audition due à l'exposition à des sons trop forts. Cette perte d'audition peut survenir subitement après un traumatisme sonore aigu, ou insidieusement à travers le temps, à la suite de multiples expositions à des sons trop forts. La perte d'audition associée à l'âge, la presbyacousie, est en réalité fortement liée à la perte auditive due au bruit, surtout dans le cas d'une exposition au bruit pendant la jeunesse.