Symétrie de rotationEn physique, la symétrie de rotation, ou invariance par rotation, est la propriété d'une théorie, ou d'un système physique de ne pas être modifié soit par une rotation spatiale quelconque, ou alors par seulement certaines d'entre elles. Lorsque le système est invariant par n'importe quelle rotation d'espace, on parle d'isotropie (du Grec isos (ἴσος, "égal, identique") et tropos (τρόπος, "tour, direction"). Dans ce cas toutes les directions de l'espace sont équivalentes.
Trois dimensionsTrois dimensions, tridimensionnel ou 3D sont des expressions qui caractérisent l'espace qui nous entoure, tel que perçu par notre vision, en ce qui concerne la largeur, la hauteur et la profondeur. Le terme « 3D » est également (et improprement) utilisé (surtout en anglais) pour désigner la représentation en (numérique), le relief des images stéréoscopiques ou autres , et même parfois le simple effet stéréophonique, qui ne peut par construction rendre que de la 2D (il ne s'agit donc que du calcul des projections perspectives, des ombrages, des rendus de matières).
Hauteur d'un triangleEn géométrie plane, une hauteur d'un triangle est une droite passant par un sommet et coupant perpendiculairement le côté opposé à ce sommet (éventuellement prolongé). Les pieds des hauteurs sont les projetés orthogonaux de chacun des sommets sur la droite portant le côté opposé. On donne également le nom de hauteur au segment joignant un sommet et le pied de la hauteur passant par ce sommet, ainsi qu'à la longueur de ce segment, soit la distance séparant un sommet et la droite portant son côté opposé.
Congruence (géométrie)En géométrie euclidienne, la congruence est une relation sur l'ensemble des parties de l'espace considéré : deux ensembles de points sont dits si l'un est l' de l'autre par une isométrie (une bijection qui conserve les distances). De manière moins formelle, deux figures sont congruentes si elles ont la même forme et la même taille, mais ont des positions respectives différentes. La congruence est une relation d'équivalence plus fine que la similitude : par exemple, deux triangles isométriques sont toujours semblables.
Matrice antisymétriqueEn mathématiques, et plus précisément en algèbre linéaire, une matrice antisymétrique est une matrice carrée opposée à sa transposée. Une matrice carrée A à coefficients dans un anneau quelconque est dite antisymétrique si sa transposée est égale à son opposée, c'est-à-dire si elle satisfait à l'équation : A = –A ou encore, en l'écrivant avec des coefficients sous la forme A = (ai,j), si : pour tout i et j, aj,i = –ai,j Les matrices suivantes sont antisymétriques : Le cas où la matrice est à coefficients dans un anneau de caractéristique 2 est très particulier.
Infinitesimal rotation matrixAn infinitesimal rotation matrix or differential rotation matrix is a matrix representing an infinitely small rotation. While a rotation matrix is an orthogonal matrix representing an element of (the special orthogonal group), the differential of a rotation is a skew-symmetric matrix in the tangent space (the special orthogonal Lie algebra), which is not itself a rotation matrix.
Rotation vectorielleSoit E un espace vectoriel euclidien. Une rotation vectorielle de E est un élément du groupe spécial orthogonal SO(E). Si on choisit une base orthonormée de E, sa matrice dans cette base est orthogonale directe. Matrice de rotation Dans le plan vectoriel euclidien orienté, une rotation vectorielle est simplement définie par son angle . Sa matrice dans une base orthonormée directe est : Autrement dit, un vecteur de composantes a pour image le vecteur de composantes que l'on peut calculer avec l'égalité matricielle : c'est-à-dire que l'on a : et Si par exemple et , désigne un des angles du triangle rectangle de côtés 3, 4 et 5.
Rotation en quatre dimensionsEn mathématiques, les rotations en quatre dimensions (souvent appelées simplement rotations 4D) sont des transformations de l'espace euclidien , généralisant la notion de rotation ordinaire dans l'espace usuel ; on les définit comme des isométries directes ayant un point fixe (qu'on peut prendre comme origine, identifiant les rotations aux rotations vectorielles) ; le groupe de ces rotations est noté SO(4) : il est en effet isomorphe au groupe spécial orthogonal d'ordre 4.
Étude de cohorteUne étude de cohorte est une étude statistique de type longitudinal. Elle peut être ou interventionnelle, ou . Ce type d'étude scientifique est notamment utilisé en médecine et en épidémiologie (pour ces deux domaines, les bases de données collectées sont dédiées aux études de cohortes épidémiologiques), en sciences humaines et sociales, en science actuarielle et en écologie. L'une des premières études de cohorte connues fut menée par Janet Lane-Claypon en 1912 dans son étude intitulée Report to the Local Government Board upon the Available Data in Regard to the Value of Boiled Milk as a Food for Infants and Young Animals.
Plane of rotationIn geometry, a plane of rotation is an abstract object used to describe or visualize rotations in space. The main use for planes of rotation is in describing more complex rotations in four-dimensional space and higher dimensions, where they can be used to break down the rotations into simpler parts. This can be done using geometric algebra, with the planes of rotations associated with simple bivectors in the algebra.