Incertitude de mesurevignette|Mesurage avec une colonne de mesure. En métrologie, une incertitude de mesure liée à un mesurage (d'après le Bureau international des poids et mesures). Elle est considérée comme une dispersion et fait appel à des notions de statistique. Les causes de cette dispersion, liées à différents facteurs, influent sur le résultat de mesurage, donc sur l'incertitude et in fine sur la qualité de la mesure. Elle comprend de nombreuses composantes qui sont évaluées de deux façons différentes : certaines par une analyse statistique, d'autres par d'autres moyens.
Time–frequency analysisIn signal processing, time–frequency analysis comprises those techniques that study a signal in both the time and frequency domains simultaneously, using various time–frequency representations. Rather than viewing a 1-dimensional signal (a function, real or complex-valued, whose domain is the real line) and some transform (another function whose domain is the real line, obtained from the original via some transform), time–frequency analysis studies a two-dimensional signal – a function whose domain is the two-dimensional real plane, obtained from the signal via a time–frequency transform.
Théorème des valeurs extrêmesEn mathématiques, et plus précisément en analyse réelle, le théorème des valeurs extrêmes ou théorème des bornes atteintes ou théorème des bornes ou théorème de Weierstrass énonce qu'une fonction continue sur un segment est bornée et atteint ses bornes. Autrement dit, une telle fonction possède un minimum et un maximum sur ce segment. Ce résultat peut être démontré par la compacité des segments réels, mais repose plus fondamentalement sur la propriété de la borne supérieure.
Fonction circulaire réciproqueLes fonctions circulaires réciproques, ou fonctions trigonométriques inverses, sont les fonctions réciproques des fonctions circulaires, pour des intervalles de définition précis. Les fonctions réciproques des fonctions sinus, cosinus, tangente, cotangente, sécante et cosécante sont appelées arc sinus, arc cosinus, arc tangente, arc cotangente, arc sécante et arc cosécante. Les fonctions circulaires réciproques servent à obtenir un angle à partir de l'une quelconque de ses lignes trigonométriques, mais aussi à expliciter les primitives de certaines fonctions.
Exponentielle intégraleEn mathématiques, la fonction exponentielle intégrale, habituellement notée Ei, est définie par : Comme l'intégrale de la fonction inverse () diverge en 0, cette définition doit être comprise, si x > 0, comme une valeur principale de Cauchy. vignette|Représentation graphique de la fonction exponentielle intégrale. La fonction Ei est liée à la fonction li (logarithme intégral) par : vignette|upright=1.5|Représentation graphique des fonctions E (en haut) et Ei (en bas), pour x > 0.
Analogiquevignette|Un peson est un instrument de mesure analogique : une longueur est proportionnelle à une force. Le terme analogique indique qu'une chose est suffisamment semblable à une autre, d'un certain point de vue, pour que leur analogie permette de dire de l'une ou de faire avec l'une ce qui s'applique aussi à l'autre. Un appareil, particulièrement un instrument de mesure ou de communication qui représente une grandeur physique par une autre est analogique, comme aussi une méthode de calcul graphique par abaque ou règle à calcul.
Continuous wavelet transformIn mathematics, the continuous wavelet transform (CWT) is a formal (i.e., non-numerical) tool that provides an overcomplete representation of a signal by letting the translation and scale parameter of the wavelets vary continuously. The continuous wavelet transform of a function at a scale (a>0) and translational value is expressed by the following integral where is a continuous function in both the time domain and the frequency domain called the mother wavelet and the overline represents operation of complex conjugate.
Propagation des incertitudesUne mesure est toujours entachée d'erreur, dont on estime l'intensité par l'intermédiaire de l'incertitude. Lorsqu'une ou plusieurs mesures sont utilisées pour obtenir la valeur d'une ou de plusieurs autres grandeurs (par l'intermédiaire d'une formule explicite ou d'un algorithme), il faut savoir, non seulement calculer la valeur estimée de cette ou ces grandeurs, mais encore déterminer l'incertitude ou les incertitudes induites sur le ou les résultats du calcul.
École classiqueL’école classique est une école de pensée économique. Libérale, elle théorise le libre-échange et ses avantages, ainsi que le fonctionnement du marché. Elle regroupe des économistes du et du . Elle a donné naissance à l'école marginaliste, au néoclassicisme et à la nouvelle économie classique. L'école classique est complexe à définir tant elle a rassemblé des auteurs divers, dont certaines vues se contredisaient.
Super-résolutionEn traitement du signal et en , la super-résolution désigne le processus qui consiste à améliorer la résolution spatiale, c'est-à-dire le niveau de détail, d'une image ou d'un système d'acquisition. Cela regroupe des méthodes matérielles qui visent à contourner les problèmes optiques et autres difficultés physiques rencontrées lors de l'acquisition d'image, ainsi que des techniques algorithmiques qui, à partir d'une ou de plusieurs images déjà capturées, créent une image de meilleure résolution.