Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Near and far fieldThe near field and far field are regions of the electromagnetic (EM) field around an object, such as a transmitting antenna, or the result of radiation scattering off an object. Non-radiative near-field behaviors dominate close to the antenna or scattering object, while electromagnetic radiation far-field behaviors dominate at greater distances. Far-field E (electric) and B (magnetic) field strength decreases as the distance from the source increases, resulting in an inverse-square law for the radiated power intensity of electromagnetic radiation.
Théorie de MieEn optique ondulatoire, la théorie de Mie, ou solution de Mie, est une solution particulière des équations de Maxwell décrivant la diffusion élastique – c'est-à-dire sans changement de longueur d'onde – d'une onde électromagnétique plane par une particule sphérique caractérisée par son diamètre et son indice de réfraction complexe. Elle tire son nom du physicien allemand Gustav Mie, qui la décrivit en détail en 1908. Le travail de son prédécesseur Ludvig Lorenz est aujourd'hui reconnu comme « empiriquement équivalent » et l'on parle parfois de la théorie de Lorenz-Mie.
FDTDFDTD est l'acronyme de l'expression anglaise Finite Difference Time Domain. C'est une méthode de calcul de différences finies dans le domaine temporel, qui permet de résoudre des équations différentielles dépendantes du temps. Cette méthode est couramment utilisée en électromagnétisme pour résoudre les équations de Maxwell. Cette méthode a été proposée par Kane S. Yee en 1966. Différences finies Méthode des différences finies Kane Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, 14, 1966, S.
Équations de Navier-Stokesthumb|Léonard de Vinci : écoulement dans une fontaine En mécanique des fluides, les équations de Navier-Stokes sont des équations aux dérivées partielles non linéaires qui décrivent le mouvement des fluides newtoniens (donc des gaz et de la majeure partie des liquides). La résolution de ces équations modélisant un fluide comme un milieu continu à une seule phase est difficile, et l'existence mathématique de solutions des équations de Navier-Stokes n'est pas démontrée.
Rayonnement électromagnétiquethumb|Répartition du rayonnement électromagnétique par longueur d'onde. Le rayonnement électromagnétique est une forme de transfert d'énergie linéaire. La lumière visible est un rayonnement électromagnétique, mais ne constitue qu'une petite tranche du large spectre électromagnétique. La propagation de ce rayonnement, d'une ou plusieurs particules, donne lieu à de nombreux phénomènes comme l'atténuation, l'absorption, la diffraction et la réfraction, le décalage vers le rouge, les interférences, les échos, les parasites électromagnétiques et les effets biologiques.
Équations de Maxwellvignette|Plaque représentant les équations de Maxwell au pied de la statue en hommage à James Clerk Maxwell d'Edimbourg. Les équations de Maxwell, aussi appelées équations de Maxwell-Lorentz, sont des lois fondamentales de la physique. Elles constituent, avec l'expression de la force électromagnétique de Lorentz, les postulats de base de l'électromagnétisme. Ces équations traduisent sous forme locale différents théorèmes (Gauss, Ampère, Faraday) qui régissaient l'électromagnétisme avant que Maxwell ne les réunisse sous forme d'équations intégrales.
Radiation resistanceRadiation resistance is that part of an antenna's feedpoint electrical resistance caused by the emission of radio waves from the antenna. In radio transmission, a radio transmitter is connected to an antenna. The transmitter generates a radio frequency alternating current which is applied to the antenna, and the antenna radiates the energy in the alternating current as radio waves. Because the antenna is absorbing the energy it is radiating from the transmitter, the antenna's input terminals present a resistance to the current from the transmitter.
Convection–diffusion equationThe convection–diffusion equation is a combination of the diffusion and convection (advection) equations, and describes physical phenomena where particles, energy, or other physical quantities are transferred inside a physical system due to two processes: diffusion and convection. Depending on context, the same equation can be called the advection–diffusion equation, drift–diffusion equation, or (generic) scalar transport equation.
Génération de seconde harmoniquevignette|Niveaux d'énergie impliqués dans la création de SHG La génération de seconde harmonique (GSH ou SHG en anglais, également appelé doublage de fréquence) est un phénomène d'optique non linéaire dans lequel des photons interagissant avec un matériau non linéaire sont combinés pour former de nouveaux photons avec le double de l'énergie, donc avec le double de la fréquence ou la moitié de la longueur d'onde des photons initiaux. La génération de seconde harmonique, en tant qu'effet optique non linéaire d'ordre pair, n'est autorisée que dans les milieux sans centre d'inversion .