Peigne de fréquences optiquesvignette|Schéma représentant les caractéristiques du spectre associé à un train d'impulsions à modes bloqués, c'est-à-dire un peigne de fréquences. En pointillés rouge est représenté l'enveloppe du spectre. En bleu est représenté les composantes du spectre (les dents du peigne).|300x300px Un peigne de fréquences est la structure spectrale d'une source optique spécifique. Celle-ci est composée d'une succession de fréquences discrètes régulièrement espacées, aussi appelées les raies ou « dents » du peigne.
Échantillonnage (signal)L'échantillonnage consiste à prélever les valeurs d'un signal à intervalles définis, généralement réguliers. Il produit une suite de valeurs discrètes nommées échantillons. L'application la plus courante de l'échantillonnage est aujourd'hui la numérisation d'un signal variant dans le temps, mais son principe est ancien. Depuis plusieurs siècles, on surveille les mouvements lents en inscrivant, périodiquement, les valeurs relevées dans un registre : ainsi des hauteurs d'eau des marées ou des rivières, de la quantité de pluie.
Filtre (audio)Dans le traitement du signal, un filtre est un appareil ou une fonction servant à retirer ou bien à accentuer ou réduire certaines parties du spectre sonore représentées dans un signal. Les filtres sont essentiels dans plusieurs fonctions des appareils électroniques (voir Filtre (électronique)). Nous ne traiterons ici que des filtres accessibles par des commandes dans les tranches des consoles de mixage et les égaliseurs qui permettent d'ajuster la tonalité des sons.
Transformation de LaplaceEn mathématiques, la transformation de Laplace est une transformation intégrale qui à une fonction f — définie sur les réels positifs et à valeurs réelles — associe une nouvelle fonction F — définie sur les complexes et à valeurs complexes — dite transformée de Laplace de f. L'intérêt de la transformation de Laplace vient de la conjonction des deux faits suivants : De nombreuses opérations courantes sur la fonction originale f se traduisent par une opération algébrique sur la transformée F.
Fourier analysisIn mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.
AutocorrélationL'autocorrélation est un outil mathématique souvent utilisé en traitement du signal. C'est la corrélation croisée d'un signal par lui-même. L'autocorrélation permet de détecter des régularités, des profils répétés dans un signal comme un signal périodique perturbé par beaucoup de bruit, ou bien une fréquence fondamentale d'un signal qui ne contient pas effectivement cette fondamentale, mais l'implique avec plusieurs de ses harmoniques. Note : La confusion est souvent faite entre l'auto-covariance et l'auto-corrélation.
Optique non linéaireLorsqu'un milieu matériel est mis en présence d'un champ électrique , il est susceptible de modifier ce champ en créant une polarisation . Cette réponse du matériau à l'excitation peut dépendre du champ de différentes façons. L'optique non linéaire regroupe l'ensemble des phénomènes optiques présentant une réponse non linéaire par rapport à ce champ électrique, c'est-à-dire une réponse non proportionnelle à E.
Partial autocorrelation functionIn time series analysis, the partial autocorrelation function (PACF) gives the partial correlation of a stationary time series with its own lagged values, regressed the values of the time series at all shorter lags. It contrasts with the autocorrelation function, which does not control for other lags. This function plays an important role in data analysis aimed at identifying the extent of the lag in an autoregressive (AR) model.
Analyse spatialevignette|200px|Carte de cas de choléra pendant l'épidémie de 1854 à Londres L'analyse spatiale est une approche géographique qui étudie les localisations et les interactions spatiales en tant que composantes actives des fonctionnements sociétaux. Elle part du postulat selon lequel l'espace est acteur organisé. C'est une science nomothétique donc elle vise à proposer une approche modélisée de l'espace géographique en mettant en évidence des formes récurrentes d'organisation spatiales et des théories, notamment à travers diverses notions-clés : distance, réseaux, structure, .