Hamiltonian systemA Hamiltonian system is a dynamical system governed by Hamilton's equations. In physics, this dynamical system describes the evolution of a physical system such as a planetary system or an electron in an electromagnetic field. These systems can be studied in both Hamiltonian mechanics and dynamical systems theory. Informally, a Hamiltonian system is a mathematical formalism developed by Hamilton to describe the evolution equations of a physical system.
Hamiltonien en théorie des champsEn physique théorique, la théorie des champs hamiltoniens est analogue à la mécanique hamiltonienne classique, appliquée à la théorie des champs. C'est un formalisme de la théorie classique des champs qui se base sur la théorie lagrangienne des champs. Elle a également des applications dans la théorie quantique des champs. L'hamiltonien, pour un système de particules discrètes, est une fonction qui dépend de leurs coordonnées généralisées et de leurs moments conjugués, et éventuellement du temps.
Linkage (mechanical)A mechanical linkage is an assembly of systems connected to manage forces and movement. The movement of a body, or link, is studied using geometry so the link is considered to be rigid. The connections between links are modeled as providing ideal movement, pure rotation or sliding for example, and are called joints. A linkage modeled as a network of rigid links and ideal joints is called a kinematic chain. Linkages may be constructed from open chains, closed chains, or a combination of open and closed chains.
Espace de Minkowskithumb|Représentation schématique de l'espace de Minkowski, qui montre seulement deux des trois dimensions spatiales. En géométrie et en relativité restreinte, l'espace de Minkowski du nom de son inventeur Hermann Minkowski, appelé aussi l'espace-temps de Minkowski ou parfois l'espace-temps de Poincaré-Minkowski, est un espace mathématique, et plus précisément un espace affine pseudo-euclidien à quatre dimensions, modélisant l'espace-temps de la relativité restreinte : les propriétés géométriques de cet espace correspondent à des propriétés physiques présentes dans cette théorie.
Mécanique newtonienneLa mécanique newtonienne est une branche de la physique. Depuis les travaux d'Albert Einstein, elle est souvent qualifiée de mécanique classique. La mécanique classique ou mécanique newtonienne est une théorie physique qui décrit le mouvement des objets macroscopiques lorsque leur vitesse est faible par rapport à celle de la lumière. Avant de devenir une science à part entière, la mécanique a longtemps été une section des mathématiques. De nombreux mathématiciens y ont apporté une contribution souvent décisive, parmi eux des grands noms tels qu'Euler, Cauchy, Lagrange.
Vitesse d'évolutionEn physique, la vitesse d'évolution (ou vitesse de variation, ou évolution temporelle) d'une grandeur physique est la dérivée partielle de cette grandeur par rapport au temps. La vitesse d'évolution est à la dimension temps ce que le vecteur gradient () est aux trois dimensions de l'espace. La vitesse d'évolution de la grandeur physique G est définie comme la limite de la différence entre deux états du système, divisée par l'intervalle de temps séparant ces états, lorsque cet intervalle tend vers zéro : La grandeur G peut être d'une nature quelconque : scalaire, vecteur, complexe, tenseur, et aussi bien intensive qu'extensive, et sa vitesse d'évolution est alors de même nature.
Fluctuations thermodynamiquesLes fluctuations thermodynamiques des atomes ou molécules à l'intérieur d'un système sont les faibles écarts statistiques à l'équilibre thermodynamique de ce système. Ils sont décrits par la physique statistique hors d'équilibre. Ces fluctuations affectent tous les degrés de liberté : translation, rotation, vibration et énergie interne des molécules dans un gaz, translation pour un atome adsorbé sur une surface ou constituant un élément étranger dans une structure cristalline.
Thermodynamique hors équilibreLa thermodynamique hors équilibre est le domaine de recherche étudiant les phénomènes de relaxation et de transport au voisinage de l'équilibre thermodynamique. Il s'agit là de phénomènes dissipatifs donc irréversibles, liés à une augmentation de l'entropie. Les méthodes présentées ici relèvent de la thermodynamique proprement dite, qui permet de donner les lois caractérisant un phénomène.
Équilibre thermodynamiquevignette|200px|Exemple d'équilibre thermodynamique de deux systèmes, en l'occurrence deux phases : l'équilibre liquide-vapeur du brome. En thermodynamique, un équilibre thermodynamique correspond à l'état d'un système ne subissant aucune évolution à l'échelle macroscopique. Les grandeurs intensives caractérisant ce système (notamment la pression, la température et les potentiels chimiques) sont alors homogènes dans l'espace et constantes dans le temps.
Transformation de LegendreLa transformation de Legendre est une opération mathématique qui, schématiquement, transforme une fonction définie par sa valeur en un point en une fonction définie par sa tangente. Elle tire son nom du mathématicien Adrien-Marie Legendre. Les cas classiques d'utilisation de la transformation de Legendre se rencontrent en thermodynamique et en mécanique lagrangienne. En thermodynamique, elle permet de calculer le potentiel thermodynamique adapté à des conditions particulières.