Hamiltonian pathIn the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path.
Multiplicateur de LagrangeEn mathématiques, et plus particulièrement en analyse, la méthode des multiplicateurs de Lagrange permet de trouver les points stationnaires (maximum, minimum...) d'une fonction dérivable d'une ou plusieurs variables, sous contraintes. On cherche à trouver l'extremum, un minimum ou un maximum, d'une fonction φ de n variables à valeurs dans les nombres réels, ou encore d'un espace euclidien de dimension n, parmi les points respectant une contrainte, de type ψ(x) = 0 où ψ est une fonction du même ensemble de départ que φ.
Théorème des fonctions implicitesEn mathématiques, le théorème des fonctions implicites est un résultat de géométrie différentielle. Certaines courbes planes sont définies par une équation cartésienne, c'est-à-dire une équation de la forme f(x, y) = 0, où x et y décrivent les nombres réels. Le théorème indique que si la fonction f est suffisamment régulière au voisinage d'un point de la courbe, il existe une fonction φ de R dans R au moins aussi régulière que f telle que localement, la courbe et le graphe de la fonction φ sont confondus.
Plan de Fanothumb|Une représentation du plan de Fano (les six segments et le cercle représentent les 7 droites). En géométrie projective finie, le plan de Fano, portant le nom du mathématicien Gino Fano, est le plus petit plan projectif fini, c'est-à-dire celui comportant le plus petit nombre de points et de droites, à savoir 7 de chaque. C'est le seul plan projectif (au sens des axiomes d'incidence) de 7 points, et c'est le plan projectif sur le corps fini à deux éléments.
Thermal reservoirA thermal reservoir, also thermal energy reservoir or thermal bath, is a thermodynamic system with a heat capacity so large that the temperature of the reservoir changes relatively little when a much more significant amount of heat is added or extracted. As a conceptual simplification, it effectively functions as an infinite pool of thermal energy at a given, constant temperature. Since it can act as an inertial source and sink of heat, it is often also referred to as a heat reservoir or heat bath.
Champ de vecteurs hamiltonienEn géométrie différentielle et plus précisément en géométrie symplectique, dans l'étude des variétés symplectiques et des variétés de Poisson, un champ de vecteurs hamiltonien est un champ de vecteurs associé à une fonction réelle différentiable appelée hamiltonien de manière semblable au champ de vecteurs gradient en géométrie riemannienne. Cependant, une des différences fondamentales est que le hamiltonien est constant le long de ses courbes intégrales. Le nom vient du mathématicien et physicien William Rowan Hamilton.
Configuration (géométrie)En géométrie, une configuration est la donnée de plusieurs éléments géométriques (points, droites, cercles, plans, angles, vecteurs...) munis de relations associées (appartenance ou incidence, parallélisme, orthogonalité...) Le terme est présent dans l’enseignement des mathématiques en France depuis 1990 en remplacement parfois du mot « figure » mais en distinguant plus spécifiquement le rôle des éléments. Ainsi, on peut considérer par exemple la configuration du théorème de Thalès ou la configuration de Möbius.
Phase planeIn applied mathematics, in particular the context of nonlinear system analysis, a phase plane is a visual display of certain characteristics of certain kinds of differential equations; a coordinate plane with axes being the values of the two state variables, say (x, y), or (q, p) etc. (any pair of variables). It is a two-dimensional case of the general n-dimensional phase space. The phase plane method refers to graphically determining the existence of limit cycles in the solutions of the differential equation.
Gauss's principle of least constraintThe principle of least constraint is one variational formulation of classical mechanics enunciated by Carl Friedrich Gauss in 1829, equivalent to all other formulations of analytical mechanics. Intuitively, it says that the acceleration of a constrained physical system will be as similar as possible to that of the corresponding unconstrained system. The principle of least constraint is a least squares principle stating that the true accelerations of a mechanical system of masses is the minimum of the quantity where the jth particle has mass , position vector , and applied non-constraint force acting on the mass.
Théorème d'inversion localeEn mathématiques, le théorème d'inversion locale est un résultat de calcul différentiel. Il indique que si une fonction f est continûment différentiable en un point, si sa différentielle en ce point est inversible alors, localement, f est inversible et son inverse est différentiable. Ce théorème est équivalent à celui des fonctions implicites, son usage est largement répandu. On le trouve par exemple utilisé, sous une forme ou une autre, dans certaines démonstrations des propriétés du multiplicateur de Lagrange.