Mesure de LebesgueLa mesure de Lebesgue est une mesure qui étend le concept intuitif de volume à une très large classe de parties de l'espace. Comme l'a immédiatement perçu son inventeur, Henri Lebesgue, elle permet de bâtir une théorie de l'intégration très performante et fondamentale en analyse moderne : la théorie de l'intégrale de Lebesgue. Plusieurs constructions bien différentes de la mesure de Lebesgue sont connues. Chacune d'entre elles peut naturellement être prise pour définition ; dans le cadre d'un article où il faut toutes les évoquer, il est prudent de fournir en ouverture une définition plus unificatrice.
Calcul des variationsLe calcul des variations (ou calcul variationnel) est, en mathématiques et plus précisément en analyse fonctionnelle, un ensemble de méthodes permettant de minimiser une fonctionnelle. Celle-ci, qui est à valeurs réelles, dépend d'une fonction qui est l'inconnue du problème. Il s'agit donc d'un problème de minimisation dans un espace fonctionnel de dimension infinie. Le calcul des variations s'est développé depuis le milieu du jusqu'aujourd'hui ; son dernier avatar est la théorie de la commande optimale, datant de la fin des années 1950.
Banach manifoldIn mathematics, a Banach manifold is a manifold modeled on Banach spaces. Thus it is a topological space in which each point has a neighbourhood homeomorphic to an open set in a Banach space (a more involved and formal definition is given below). Banach manifolds are one possibility of extending manifolds to infinite dimensions. A further generalisation is to Fréchet manifolds, replacing Banach spaces by Fréchet spaces. On the other hand, a Hilbert manifold is a special case of a Banach manifold in which the manifold is locally modeled on Hilbert spaces.
Placage de reliefLe placage de relief, ou topographie d’aspérité également nommé sous son appellation anglaise de bump mapping, est un terme informatique qui désigne la technique utilisée en infographie et qui sert à donner du relief aux modèles 2D ou 3D, ou aux textures. , où la technique consiste à modifier la normale de la surface. Les termes placage de rugosité et . Le placage de relief est une technique permettant d'ajouter du relief à une surface grâce à l'interaction entre la lumière de l'environnement et une texture irrégulière appliquée sur cette surface.
Sphère d'homologieEn topologie algébrique, une sphère d'homologie (ou encore, sphère d'homologie entière) est une variété X de dimension n ≥ 1 qui a les mêmes groupes d'homologie que la n-sphère standard S, à savoir : H0(X,Z) = Z = Hn(X,Z) et Hi(X,Z) = {0} pour tout autre entier i. Une telle variété X est donc connexe, fermée (i.e. compacte et sans bord), orientable, et avec (à part b0 = 1) un seul nombre de Betti non nul : bn. Les sphères d'homologie rationnelle sont définies de façon analogue, avec l'homologie à coefficients rationnels.
Structural stabilityIn mathematics, structural stability is a fundamental property of a dynamical system which means that the qualitative behavior of the trajectories is unaffected by small perturbations (to be exact C1-small perturbations). Examples of such qualitative properties are numbers of fixed points and periodic orbits (but not their periods). Unlike Lyapunov stability, which considers perturbations of initial conditions for a fixed system, structural stability deals with perturbations of the system itself.
Théorème du point fixe de BrouwerEn mathématiques, et plus précisément en topologie algébrique, le théorème du point fixe de Brouwer fait partie de la grande famille des théorèmes de point fixe, qui énoncent que si une fonction continue f vérifie certaines propriétés, alors il existe un point x0 tel que f(x0) = x0. La forme la plus simple du théorème de Brouwer prend comme hypothèse que la fonction f est définie sur un intervalle fermé borné non vide I et à valeurs dans I. Sous une forme plus générale, la fonction est définie sur un convexe compact K d'un espace euclidien et à valeurs dans K.
Texture (image de synthèse)Dans le domaine de la , une texture est une image en deux dimensions (2D) que l'on va appliquer sur une surface (2D) ou un volume en trois dimensions (3D) de manière à habiller cette surface ou ce volume. En simplifiant, on peut l'assimiler à un papier peint très plastique et déformable que l'on applique en 3D en spécifiant la transformation géométrique que subit chaque pixel du papier pour s'appliquer sur l'élément 3D. Le pixel ainsi manipulé en 3D est appelé texel.
Cartographie en ligneLa cartographie en ligne (en anglais : web mapping ou webmapping) est la forme de la cartographie numérique qui fait usage d'Internet pour pouvoir produire, concevoir, traiter et publier des cartes géographiques. Elle repose sur les services Web dans la logique du cloud computing. Avec le Web 2.0, de nombreux services Web cartographiques sont apparus (cf palette en fin d'article). Certains sont « propriétaires », tels que Google Maps, Google Earth, Bing Maps, etc. D'autres sont fondés sur des démarches coopératives libres, tel que OpenStreetMap.
Fonction régulière non analytiqueEn mathématiques, les fonctions régulières (i.e. les fonctions indéfiniment dérivables) et les fonctions analytiques sont deux types courants et d'importance parmi les fonctions. Si on peut prouver que toute fonction analytique réelle est régulière, la réciproque est fausse. Une des applications des fonctions régulières à support compact est la construction de fonctions régularisantes, qui sont utilisées dans la théorie des fonctions généralisées, telle la théorie des distributions de Laurent Schwartz.