Contrainte holonomeEn mécanique analytique, on dit qu'un système de N particules est soumis à une contrainte holonome s'il existe une équation algébrique caractérisant l'état du système, et dont les variables sont les vecteurs coordonnées des particules, pour . On écrit cette contrainte sous la forme . Si les contraintes sont modélisées par un système d'équations de ce type, on parle encore de contraintes holonomes. Une contrainte qui ne peut pas s'écrire sous cette forme est dite non holonome.
Modèle du solide indéformableLe modèle du solide indéformable est un modèle de solide fréquemment utilisé en mécanique des systèmes de points matériels. Il s'agit d'une idéalisation de la notion usuelle de corps (à l'état) solide, considéré comme absolument rigide, et négligeant toute déformation. Le solide indéformable est un modèle utilisé en mécanique pour décrire le comportement d'un corps (objet, pièce). Comme son nom l'indique, on considère qu'au cours du temps la distance entre deux points donnés ne varie pas.
Rigid body dynamicsIn the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces. The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference frames attached to each body. This excludes bodies that display fluid, highly elastic, and plastic behavior.
Rotateur rigideLe rotateur rigide est un modèle mécanique utilisé pour expliquer les systèmes en rotation (et particulièrement en mécanique quantique). Un rotateur rigide quelconque est un objet tridimensionnel rigide, comme une toupie. Afin d'orienter un tel objet dans l'espace, trois angles sont nécessaires. Le rotateur linéaire, objet bidimensionnel, est un cas particulier de rotateur rigide en trois dimensions ne nécessitant que deux angles pour décrire son orientation. On peut citer comme exemple de rotateur linéaire une molécule diatomique.
Équations de Lagrangevignette|Joseph-Louis Lagrange Les équations de Lagrange, découvertes en 1788 par le mathématicien Joseph-Louis Lagrange, sont une reformulation de la mécanique classique. Il s'agit d'une reformulation de l'équation de Newton, qui ne fait pas intervenir les forces de réaction. Pour cela, on exprime les contraintes que subit la particule étudiée sous la forme d'équations du type : Il n'y a qu'une équation si le mouvement est contraint à une surface, deux s'il est contraint à une courbe.
Variété de PoissonEn géométrie, une structure de Poisson sur une variété différentielle est un crochet de Lie (appelé crochet de Poisson dans ce cas) sur l'algèbre des fonctions lisses de à valeurs réelles, vérifiant formule de Leibniz En d'autres termes, une structure de Poisson est structure d'algèbre de Lie sur l'espace vectoriel des fonctions lisses sur de sorte que est un champ de vecteurs pour toute fonction lisse , appelé champ de vecteurs hamiltonien associé à . Soit une variété différentielle.
Coordonnées généraliséesthumb|Calcul de vecteurs dans un système de coordonnées généralisées cartésien. On appelle coordonnées généralisées d'un système physique un ensemble de variables réelles, qui ne correspondent pas toutes à des coordonnées cartésiennes (par exemple : angles, positions relatives), et permettant de décrire ce système, en particulier dans le cadre de la mécanique lagrangienne. Le terme « généralisées » vient de l'époque où les coordonnées cartésiennes étaient considérées comme étant les coordonnées normales ou naturelles.
Théorie de jaugeEn physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Euler's equations (rigid body dynamics)In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. Their general vector form is where M is the applied torques and I is the inertia matrix. The vector is the angular acceleration. Again, note that all quantities are defined in the rotating reference frame.
Crochet de PoissonEn mécanique hamiltonienne, on définit le crochet de Poisson de deux observables et , c'est-à-dire de deux fonctions sur l'espace des phases d'un système physique, par : où les variables, dites canoniques, sont les coordonnées généralisées et les moments conjugués . C'est un cas particulier de crochet de Lie. Avant de continuer, soulignons au passage qu'il existe deux conventions de signes au crochet de Poisson. La définition donnée ci-haut est dans la convention de signe employée par Dirac, Arnold , Goldstein et de Gosson pour n'en citer que quelques-uns.