Relation d'équivalenceEn mathématiques, une relation d'équivalence permet, dans un ensemble, de mettre en relation des éléments qui sont similaires par une certaine propriété. On pourra ainsi regrouper ces éléments par « paquets » d'éléments qui se ressemblent, définissant ainsi la notion de classe d'équivalence, pour enfin construire de nouveaux ensembles en « assimilant » les éléments similaires à un seul et même élément. On aboutit alors à la notion d'ensemble quotient. vignette|upright=1.5|Sur cet ensemble de huit exemplaires de livres, la relation « .
Equivalence classIn mathematics, when the elements of some set have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set into equivalence classes. These equivalence classes are constructed so that elements and belong to the same equivalence class if, and only if, they are equivalent. Formally, given a set and an equivalence relation on the of an element in denoted by is the set of elements which are equivalent to It may be proven, from the defining properties of equivalence relations, that the equivalence classes form a partition of This partition—the set of equivalence classes—is sometimes called the quotient set or the quotient space of by and is denoted by .
Effet Hall quantique entierL'effet Hall quantique entier est une version en mécanique quantique de l'effet Hall mise en évidence en 1980 par le physicien allemand Klaus von Klitzing. Cette découverte a eu d'importantes applications dans le développement des semi-conducteurs et en métrologie, notamment dans la détermination de la constante de structure fine.
Densité de courantLa densité de courant, ou densité volumique de courant, est un vecteur qui décrit le courant électrique à l'échelle locale, en tout point d'un système physique. Dans le Système international d'unités, son module s'exprime en ampères par mètre carré ( ou ). À l'échelle du système tout entier il s'agit d'un champ de vecteurs, puisque le vecteur densité de courant est défini en tout point.
Modèle de Hubbardvignette|Modèle de Hubbard à deux dimensions. Le modèle de Hubbard est un modèle étudié en théorie de la matière condensée. Il décrit des fermions (généralement des électrons) sur un réseau (en général les atomes qui forment un solide), qui interagissent uniquement lorsqu'ils se trouvent sur le même site (c'est-à-dire sur le même atome). Ce modèle a été introduit en 1963 à peu près simultanément par , Martin C. Gutzwiller et Junjiro Kanamori. Il est parfois appelé modèle de Hubbard-Gutzwiller-Kanamori pour cette raison.
K-théorieEn mathématiques, la K-théorie est un outil utilisé dans plusieurs disciplines. En topologie algébrique, la sert de théorie de cohomologie. Une variante est utilisée en algèbre sous le nom de K-théorie algébrique. Les premiers résultats de la K-théorie ont été dans le cadre de la topologie algébrique, comme une théorie de cohomologie extraordinaire (elle ne vérifie pas l'axiome de dimension). Par la suite, ces méthodes ont été utilisées dans beaucoup d'autres domaines comme la géométrie algébrique, l'algèbre, la théorie des nombres, la théorie des opérateurs, etc.
Partial equivalence relationIn mathematics, a partial equivalence relation (often abbreviated as PER, in older literature also called restricted equivalence relation) is a homogeneous binary relation that is symmetric and transitive. If the relation is also reflexive, then the relation is an equivalence relation. Formally, a relation on a set is a PER if it holds for all that: if , then (symmetry) if and , then (transitivity) Another more intuitive definition is that on a set is a PER if there is some subset of such that and is an equivalence relation on .
Classe caractéristiqueUne classe caractéristique est un objet mathématique défini et étudié notamment en topologie algébrique et en K-théorie, afin de différencier les fibrés vectoriels. De telles classes sont aujourd'hui comprises comme des invariants cohomologiques. La notion de classe caractéristique répond à une tentative de classification. Plus précisément, si est un fibré vectoriel, une classe caractéristique de est une classe dans la cohomologie de la base qui vérifie la condition suivante, dite de compatibilité : pour toute application continue , on a où est le fibré vectoriel induit sur par .
Classe de PontriaguineEn mathématiques, les classes de Pontriaguine sont des classes caractéristiques associées aux fibrés vectoriels réels, nommées d'après Lev Pontriaguine. Les classes de Pontriaguine appartiennent aux groupes de cohomologie de degré un multiple de quatre. Soit E un fibré vectoriel réel au-dessus de M. La k-ième classe de Pontriaguine pk(E) est définie par : pk(E) = pk(E, Z) = (−1)k c2k(E ⊗ C) ∈ H4k(M, Z), où c2k(E ⊗ C) est la 2k-ième classe de Chern du complexifié E ⊗ C = E ⊕ iE de E ; H4k(M, Z) est le 4k-ième groupe de cohomologie de M à coefficients entiers.
Diffraction des électronsLa diffraction des électrons est une technique utilisée pour l'étude de la matière qui consiste à bombarder d'électrons un échantillon et à observer la figure de diffraction résultante. Ce phénomène se produit en raison de la dualité onde-particule, qui fait qu'une particule matérielle (dans le cas de l'électron incident) peut être décrite comme une onde. Ainsi, un électron peut être considéré comme une onde, comme pour le son ou les vagues à la surface de l'eau. Cette technique est similaire à la diffraction X et à la diffraction de neutrons.