Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Problème de la mesure quantiqueLe problème de la mesure quantique consiste en un ensemble de problèmes, qui mettent en évidence des difficultés de corrélation entre les postulats de la mécanique quantique et le monde macroscopique tel qu'il nous apparaît ou tel qu'il est mesuré.
Système d'unitésUn système d'unités est un ensemble d'unités de mesure couramment employées dans des domaines d'activité humaine, présentant des caractères de cohérence qui en facilitent l'usage entre les organisations d'une société humaine. Historiquement, les systèmes d'unités ont été d'une grande importance, soumis à réglementation et définis dans des domaines scientifiques et commerciaux. Depuis que les civilisations se sont développées, les hommes ont cherché à développer des systèmes d'unités cohérents, afin de faciliter les échanges, tant scientifiques, que culturels, économiques, et financiers.
Bruit gaussienEn traitement du signal, un bruit gaussien est un bruit dont la densité de probabilité est une distribution gaussienne (loi normale). L'adjectif gaussien fait référence au mathématicien, astronome et physicien allemand Carl Friedrich Gauss. La densité de probabilité d'une variable aléatoire gaussienne est la fonction : où représente le niveau de gris, la valeur de gris moyenne et son écart type. Un cas particulier est le bruit blanc gaussien, dans lequel les valeurs à toute paire de temps sont identiquement distribuées et statistiquement indépendantes (et donc ).
Propagation des incertitudesUne mesure est toujours entachée d'erreur, dont on estime l'intensité par l'intermédiaire de l'incertitude. Lorsqu'une ou plusieurs mesures sont utilisées pour obtenir la valeur d'une ou de plusieurs autres grandeurs (par l'intermédiaire d'une formule explicite ou d'un algorithme), il faut savoir, non seulement calculer la valeur estimée de cette ou ces grandeurs, mais encore déterminer l'incertitude ou les incertitudes induites sur le ou les résultats du calcul.
Complexité paramétréeEn algorithmique, la complexité paramétrée (ou complexité paramétrique) est une branche de la théorie de la complexité qui classifie les problèmes algorithmiques selon leur difficulté intrinsèque en fonction de plusieurs paramètres sur les données en entrée ou sur la sortie. Ce domaine est étudié depuis les années 90 comme approche pour la résolution exacte de problèmes NP-complets. Cette approche est utilisée en optimisation combinatoire, notamment en algorithmique des graphes, en intelligence artificielle, en théorie des bases de données et en bio-informatique.
Complexité en espaceEn algorithmique, la complexité en espace est une mesure de l'espace utilisé par un algorithme, en fonction de propriétés de ses entrées. L'espace compte le nombre maximum de cases mémoire utilisées simultanément pendant un calcul. Par exemple le nombre de symboles qu'il faut conserver pour pouvoir continuer le calcul. Usuellement l'espace que l'on prend en compte lorsque l'on parle de l'espace nécessaire pour des entrées ayant des propriétés données est l'espace nécessaire le plus grand parmi ces entrées ; on parle de complexité en espace dans le pire cas.
Principe d'incertitudeEn mécanique quantique, le principe d'incertitude ou, plus correctement, principe d'indétermination, aussi connu sous le nom de principe d'incertitude de Heisenberg, désigne toute inégalité mathématique affirmant qu'il existe une limite fondamentale à la précision avec laquelle il est possible de connaître simultanément deux propriétés physiques d'une même particule ; ces deux variables dites complémentaires peuvent être sa position (x) et sa quantité de mouvement (p).
Quantum foundationsQuantum foundations is a discipline of science that seeks to understand the most counter-intuitive aspects of quantum theory, reformulate it and even propose new generalizations thereof. Contrary to other physical theories, such as general relativity, the defining axioms of quantum theory are quite ad hoc, with no obvious physical intuition. While they lead to the right experimental predictions, they do not come with a mental picture of the world where they fit.
Système métriqueLe système métrique est un système de mesure décimal adopté internationalement. Il est largement utilisé et, lorsqu'il est utilisé, c'est le seul ou le plus commun des systèmes de poids et de mesures. Il est maintenant connu sous le nom de système international d'unités (SI). Il est utilisé pour mesurer les choses quotidiennes telles que la masse d'un sac de farine, la taille d'une personne, la vitesse d'une voiture, et le volume de carburant dans son réservoir. Il est également utilisé dans la science, l'industrie et le commerce.